Sens de variation, fonction exponentielle, et deux tangentes
Exercice corrigé - Spécialité maths, première générale
Énoncé
On considère la fonction
définie par
.
Déterminer les équations des tangentes à la courbe de
aux points d'abscisses
et
.


Déterminer les équations des tangentes à la courbe de



Correction
avec
donc
,
et alors
, soit
.
L'équation de la tangente en
est
et donc les deux équations,
en 0: avec
et
, on obtient
en 1: avec
et
, on obtient
Correction
On




L'équation de la tangente en


en 0: avec



en 1: avec



Tag:Exponentielle
Voir aussi:
Quelques devoirs
Probabilités conditionnelles et calculs de probabilités avec un arbre de probabilités. Propriétés algébriques de l'exponentielle et une étude de fonctionDevoir: Géométrie avec le produit scalaire, et probabilités conditionnelles et arbres de probabilités
étude de fonctions avec exponentielle, calculs de dérivées, et position relative d'une courbe et d'une droite
étude de fonctions avec exponentielle, premier devoir sur les suites: calcul des premiers termes et sens de variation, construction des premiers termes d'une suite
dérivée et sens de variation d'une fonction rationnelle - Calculs algébriques et équations avec exponentielles - Probabilités conditionnelles et arbre de probabilité
équations et inéquations avec exponentielles, variation de fonctions avec exponentielle, probabilités conditionnelle et arbre de probabilité