Diagonalisabilité d'une application linéaire entre polynomes
Colle de mathématiques
Sujet de colle de maths:- DiagonalisationDiagonalisation de matrice et réduction des endomorphismes
- PolynômePolynômes
Énoncé du sujet
- Soit
et
deux réels et
une fonction de classe
qui vérifie, pour tout
,
Montrer qu'il existe une constantetelle que, pour tout
,
.
[.6em] Indication: on pourra considérer la fonction définie par - Soit un entier
et
l'application
- Montrer que
est un endomorphisme de
.
- Soit
. Montrer qu'il existe deux réels
et
(qui dépendent de
et
) tels que
- Montrer que
est diagonalisable.
- Montrer que
Correction
Correction
- Soit
. En prenant le logarithme, on a
et alors, en dérivant,
et alors,
On obtient donc que
et donc, soit, soit
donc
.
En revenant à la définition de, on a donc
, qui est le résultat souhaité sur
.
Remarque: on peut aussi directement dériver la fonction.
-
- Par linéarité de la dérivée, l'application
est aussi linéaire. De plus, si
, alors
avec
et alors
les termes de degrés'annulent, et le polynôme
est donc de degré
, soit
, ce qui finit de montrer que
est bien un endomorphisme de
- Il suffit de mettre sur le même dénominateur:
et on doit donc avoir
- Soit
une valeur propre de
, alors il existe un polynôme
non nul tel que
soit, d'après la question précédent,
et alors, d'après la première question, il existe une constantetel que
Maintenant, cette expression est un polynôme de degré au pluslorsque
et
sont des entiers tels que
,
et
. D'après la question précédente, la troisième relation est assurée, tandis que les deux autres s'écrivent:
et
. En résumé,
doit être un entier tel que
Il y atels entiers, qui est aussi la dimension de
. Ainsi,
n' que des valeurs propres simples, et est diagonalisable.
- Par linéarité de la dérivée, l'application
Tags:DiagonalisationPolynôme
Autres sujets au hasard:

Voir aussi: