Bac 2016 (Amérique du nord) - Récupérateur d'eau: logarithme, tangente, primitive, intégrale, TVI et dichotomie
Exercice corrigé - Spécialité maths, terminale générale
Un particulier veut faire fabriquer un récupérateur d'eau.
Ce récupérateur d'eau est une cuve qui doit respecter le cahier des
charges suivant:
Cette cuve est schématisée ci-dessous.
![$$(-1.8,-0.5)(7,5)
\psplot[plotpoints=4000]{2}{5.437}{x 2 div ln x mul x sub 2 add}
\pspolygon(2,0)(2,1.8)(-1.3,2.5)(-1.3,0.7)
\rput(-3.3,0.7){\psplot[plotpoints=4000]{2}{5.437}{x 2 div ln x mul x sub 2 add}}
\psline(2.1,2.7)(5.4,2)
\psline(-1.3,2.5)(2.1,2.7)
\psline(2,1.8)(5.4,2)
\psline[linewidth=0.5pt](2,1.8)(2,3)\psline[linewidth=0.5pt](-1.3,2.5)(-1.3,3.7)
\psset{arrowsize=2pt 3}
\psline[linewidth=0.5pt,arrowsize=8pt]{<->}(2,3)(-1.3,3.7)
\psline[linewidth=0.5pt](2,1.8)(1.2,1.75)\psline[linewidth=0.5pt](2,0)(1.2,-0.05)
\psline[linewidth=0.5pt,arrowsize=8pt]{<->}(1.2,1.75)(1.2,-0.05)
\uput[l](1.2,0.85){2 m}\uput[u](1.35,3.35){5 m}
$$](/Generateur-Devoirs/TS/ChapIntegration/ex2016-Amerique-du-nord-juin/1.png)
La partie incurvée est modélisée par la courbe
de la
fonction
sur l'intervalle
définie par:
![\[f(x)=x\ln \lp\dfrac{x}{2}\rp-x+2.\]](/Generateur-Devoirs/TS/ChapIntegration/ex2016-Amerique-du-nord-juin/5.png)
La courbe
est représentée ci-dessous dans un repère
orthonormé d'unité 1m et constitue une vue de profil de la cuve.
On considère les points
,
et
.
(-0.2,-0.25)(6,2.5)
\psaxes[linewidth=1.25pt](0,0)(0,0)(6,2.5)
\uput[u](2.8,0.2){$\mathcal{C}_f$}
\pscustom[fillstyle=solid,fillcolor=lightgray]
{\psplot[plotpoints=4000]{2}{5.437}{x 2 div ln x mul x sub 2 add}
\psline(5.437,2)(6,2)
\psline(6,0)(2,0)}
\pscustom[fillstyle=solid,fillcolor=lightgray]
{\psplot[plotpoints=4000]{2}{5.437}{x 2 div ln x mul x sub 2 add}
\psline(5.437,2)(6,2)
\psline(6,0)(2,0)}
\psframe[fillstyle=solid,fillcolor=lightgray](2,2)
\psdots(2,2)(5.437,2)
\psplot[plotpoints=4000]{2}{5.437}{x 2 div ln x mul x sub 2 add}
\psplot[plotpoints=4000]{3}{5.8}{x 2 add 5.437 sub}
\uput[u](2,2){$A$}
\uput[u](5.437,2){$B$}
\uput[ul](5.75,2.2){$\mathcal{T}$}
\uput[dl](2,0){$I$}
\uput[dr](3.437,0){$D$}
\rput(1,1){Terrain}
\rput(3.2,1.2){Cuve}
\rput(4.7,0.5){Terrain}
\psline[linestyle=dotted,linewidth=1.5pt](2,2)(5.437,2)
\end{pspicture*}\]](/Generateur-Devoirs/TS/ChapIntegration/ex2016-Amerique-du-nord-juin/10.png)
Partie A  L'objectif de cette partie est d'évaluer le volume de la cuve.
Partie B  Pour tout réel
compris
entre
et
, on note
le volume d'eau, exprimé en m3, se trouvant dans la cuve lorsque la hauteur d'eau dans la cuve est
égale à
.
On admet que, pour tout réel
de l'intervalle [2 ; 2e],
![\[v(x) = 5\left[\dfrac{x^2}{2}\ln \left( \dfrac{x}{2}\right) - 2x\ln\left( \dfrac{x}{2}\right) - \dfrac{x^2}{4} + 2x - 3\right].\]](/Generateur-Devoirs/TS/ChapIntegration/ex2016-Amerique-du-nord-juin/49.png)
{\n}}
}
\pspolygon[fillstyle=solid,fillcolor=gray](2,0.1)(2,1.5)(0.35,2.3)(0.35,0.9)
\pspolygon[fillstyle=solid,fillcolor=gray](2,1.5)(0.35,2.3)(3.37,2.47)(5.08,1.7)
\pscustom[fillstyle=solid,fillcolor=gray]{
\pscurve(2,0.1)(3,0.316)(4,0.87)(5.08,1.75)
\psline(5.08,1.75)(2,1.5)
}
\pspolygon(5.437,2.1)(2,1.85)(0.35,2.7)(3.787,2.95)
\psline(2,1.85)(2,1.5)
\psline(0.35,2.7)(0.35,2.3)
\pscurve(0.35,0.9)(1.35,1.16)(2.35,1.72)(3.35,2.5)(3.787,2.95)
\psline[linestyle=dotted,linewidth=1.5pt](5.08,0.2)(5.08,1.75)(0,1.37)
\uput[d](5.2,0.3){$x$}
\uput[l](0,1.37){$f(x)$}
\multido{\n=0+1}{4}{\uput[l](0,\n){\n}}
\end{pspicture}\]](/Generateur-Devoirs/TS/ChapIntegration/ex2016-Amerique-du-nord-juin/50.png)
- elle doit être située à deux mètres de sa maison;
- la profondeur maximale doit être de deux mètres;
- elle doit mesurer cinq mètres de long;
- elle doit épouser la pente naturelle du terrain.
Cette cuve est schématisée ci-dessous.
![$$(-1.8,-0.5)(7,5)
\psplot[plotpoints=4000]{2}{5.437}{x 2 div ln x mul x sub 2 add}
\pspolygon(2,0)(2,1.8)(-1.3,2.5)(-1.3,0.7)
\rput(-3.3,0.7){\psplot[plotpoints=4000]{2}{5.437}{x 2 div ln x mul x sub 2 add}}
\psline(2.1,2.7)(5.4,2)
\psline(-1.3,2.5)(2.1,2.7)
\psline(2,1.8)(5.4,2)
\psline[linewidth=0.5pt](2,1.8)(2,3)\psline[linewidth=0.5pt](-1.3,2.5)(-1.3,3.7)
\psset{arrowsize=2pt 3}
\psline[linewidth=0.5pt,arrowsize=8pt]{<->}(2,3)(-1.3,3.7)
\psline[linewidth=0.5pt](2,1.8)(1.2,1.75)\psline[linewidth=0.5pt](2,0)(1.2,-0.05)
\psline[linewidth=0.5pt,arrowsize=8pt]{<->}(1.2,1.75)(1.2,-0.05)
\uput[l](1.2,0.85){2 m}\uput[u](1.35,3.35){5 m}
$$](/Generateur-Devoirs/TS/ChapIntegration/ex2016-Amerique-du-nord-juin/1.png)
La partie incurvée est modélisée par la courbe


![$[2;2e]$](/Generateur-Devoirs/TS/ChapIntegration/ex2016-Amerique-du-nord-juin/4.png)
![\[f(x)=x\ln \lp\dfrac{x}{2}\rp-x+2.\]](/Generateur-Devoirs/TS/ChapIntegration/ex2016-Amerique-du-nord-juin/5.png)
La courbe

On considère les points



(-0.2,-0.25)(6,2.5)
\psaxes[linewidth=1.25pt](0,0)(0,0)(6,2.5)
\uput[u](2.8,0.2){$\mathcal{C}_f$}
\pscustom[fillstyle=solid,fillcolor=lightgray]
{\psplot[plotpoints=4000]{2}{5.437}{x 2 div ln x mul x sub 2 add}
\psline(5.437,2)(6,2)
\psline(6,0)(2,0)}
\pscustom[fillstyle=solid,fillcolor=lightgray]
{\psplot[plotpoints=4000]{2}{5.437}{x 2 div ln x mul x sub 2 add}
\psline(5.437,2)(6,2)
\psline(6,0)(2,0)}
\psframe[fillstyle=solid,fillcolor=lightgray](2,2)
\psdots(2,2)(5.437,2)
\psplot[plotpoints=4000]{2}{5.437}{x 2 div ln x mul x sub 2 add}
\psplot[plotpoints=4000]{3}{5.8}{x 2 add 5.437 sub}
\uput[u](2,2){$A$}
\uput[u](5.437,2){$B$}
\uput[ul](5.75,2.2){$\mathcal{T}$}
\uput[dl](2,0){$I$}
\uput[dr](3.437,0){$D$}
\rput(1,1){Terrain}
\rput(3.2,1.2){Cuve}
\rput(4.7,0.5){Terrain}
\psline[linestyle=dotted,linewidth=1.5pt](2,2)(5.437,2)
\end{pspicture*}\]](/Generateur-Devoirs/TS/ChapIntegration/ex2016-Amerique-du-nord-juin/10.png)
Partie A  L'objectif de cette partie est d'évaluer le volume de la cuve.
- Justifier que les points
et
appartiennent à la courbe
et que l'axe des abscisses est tangent à la courbe
au point
.
- On note
la tangente à la courbe
au point
, et
le point d'intersection de la droite
avec l'axe des abscisses.
- Déterminer une équation de la droite
et en déduire les coordonnées de
.
- On appelle
l'aire du domaine délimité par la courbe
, les droites d'équations
,
et
.
peut être encadrée par l'aire du triangle
et celle du trapèze
.
Quel encadrement du volume de la cuve peut-on en déduire ?
- Déterminer une équation de la droite
-
- Montrer que, sur l'intervalle
, la fonction
définie par
est une primitive de la fonctiondéfinie par
.
- En déduire une primitive
de la fonction
sur l'intervalle
.
- Déterminer la valeur exacte de l'aire
et en déduire une valeur approchée du volume
de la cuve au m3 près.
- Montrer que, sur l'intervalle
Partie B  Pour tout réel





On admet que, pour tout réel

![\[v(x) = 5\left[\dfrac{x^2}{2}\ln \left( \dfrac{x}{2}\right) - 2x\ln\left( \dfrac{x}{2}\right) - \dfrac{x^2}{4} + 2x - 3\right].\]](/Generateur-Devoirs/TS/ChapIntegration/ex2016-Amerique-du-nord-juin/49.png)
{\n}}
}
\pspolygon[fillstyle=solid,fillcolor=gray](2,0.1)(2,1.5)(0.35,2.3)(0.35,0.9)
\pspolygon[fillstyle=solid,fillcolor=gray](2,1.5)(0.35,2.3)(3.37,2.47)(5.08,1.7)
\pscustom[fillstyle=solid,fillcolor=gray]{
\pscurve(2,0.1)(3,0.316)(4,0.87)(5.08,1.75)
\psline(5.08,1.75)(2,1.5)
}
\pspolygon(5.437,2.1)(2,1.85)(0.35,2.7)(3.787,2.95)
\psline(2,1.85)(2,1.5)
\psline(0.35,2.7)(0.35,2.3)
\pscurve(0.35,0.9)(1.35,1.16)(2.35,1.72)(3.35,2.5)(3.787,2.95)
\psline[linestyle=dotted,linewidth=1.5pt](5.08,0.2)(5.08,1.75)(0,1.37)
\uput[d](5.2,0.3){$x$}
\uput[l](0,1.37){$f(x)$}
\multido{\n=0+1}{4}{\uput[l](0,\n){\n}}
\end{pspicture}\]](/Generateur-Devoirs/TS/ChapIntegration/ex2016-Amerique-du-nord-juin/50.png)
- Quel volume d'eau, au m3 près, y a-t-il dans la cuve lorsque la hauteur d'eau dans la cuve est de un mètre ?
- On rappelle que
est le volume total de la cuve,
est la fonction définie en début d'exercice et
la fonction définie dans la partie B.
On considère l'algorithme ci-dessous.
Interpréter le résultat que cet algorithme permet d'afficher.
Correction
Bac S - Amérique du nord, 1er juin 2016 6 points
Partie A 
Partie B
Cacher la correction
Bac S - Amérique du nord, 1er juin 2016 6 points
Partie A 
- On a
, car
, et donc
.
De même,, car
, et donc
.
De plus, enle coefficient directeur de la tangente à
est
.
On a, pour tout,
, soit
, avec
, donc
,
, donc
, et
, donc
.
On a alors,, soit
.
Ainsi, la tangente àen
a pour coefficient directeur
et passe par
: c'est l'axe des abscisses.
-
- Une équation de
est:
, avec
et
, d'où
.
On a alorsavec
. Ainsi,
.
- L'aire de
, trangle rectangle en
, est
et l'aire du trapèzeest
.
Ainsi le volumede la cuve est tel que
soit approximativement
- Une équation de
-
- On a
avec
, donc
,
, donc
, et
, donc
.
On a alors,, soit
ce qui montre queest bien une primitive de
.
- On en déduit qu'une primitive de
définie par
est donnée par
- On peut alors calculer l'intégrale:
avec, et
, donc
et on en déduit le volume de la cuve:.
- On a
Partie B
- Le volume est
avec
tel que
. On cherche donc à résoudre l'équation
, avec
.
On ne sait pas résoudre excactement cette équation. On peut par contre le faire de manière approchée, en utilisant le théorème des valeurs intermédiaires.
On sait que, d'après A.1. et donc, comme
est strictement croissante sur
, que pour tout
,
.
Ainsiest strictement croissante sur
, avec de plus
et
. On en déduit, d'après le corollaire du théorème des valeurs intermédiaires (ou théorème de la bijection), qu'il existe une unique solution
à l'équation
.
Avec la calculatrice (à l'aide d'un tableau de valeurs, ou par dichotomie par exemple), on trouve, et alors le volume est de
.
- Cet algorithme est un algorithme de recherche par dichotomie.
Il permet de chercher les valeurs d'un encadrementpour lequel la hauteur
correspond à la moitié de la cuve.
Cet encadrement permet d'avoir un résultat précis àprès.
Cacher la correction
Tags:LogarithmeIntégralesPrimitiveFonctions
Voir aussi:
Quelques devoirs
maison de géométrie plane: géométrie plane analytique, vecteurs et équations de droites, exponentielle, tangente
géométrie dans l'espace, vecteurs et équations de plan, représentation paramétrique d&une droite de l'espace, tangente à une courbe, exponentielle
Bac blanc: QCM: fonctions, convexité, suite et programme Python - Probabilités: test pour détecter une maladie - Suites: un peu sur les suites - Géométrie dans l'espace - Fonction logarithme
logarithme népérien: résolution d'équations, étude de fonction, et convexité, points d'inflexion
maison: calculs de dérivées, limites, fonctions et suites récurrentes, démonstration par récurrence et théorème des gendarmes