Bac 2014 - Suite d'intégrales et exponentielle
Exercice corrigé - Spécialité maths, terminale générale
Bac S, 19 juin 2014, 5 points
Partie A
Dans le plan muni d'un repère orthonormé, on désigne par
la courbe représentative de la fonction
définie sur
par:
Partie B
L'objet de cette partie est d'étudier la suite
définie sur
par:
Correction
Partie A
Dans le plan muni d'un repère orthonormé, on désigne par




- Justifier que
passe par le point A de coordonnées
.
- Déterminer le tableau de variation de la fonction
. On précisera les limites de
en
et en
.
Partie B
L'objet de cette partie est d'étudier la suite



- Dans le plan muni d'un repère orthonormé
, pour tout entier naturel
, on note
la courbe représentative de la fonction
définie sur
par
Sur le graphique ci-dessous on a tracé la courbepour plusieurs valeurs de l'entier
et la droite
d'équation
.
- Interpréter géométriquement l'intégrale
.
- En utilisant cette interprétation, formuler une conjecture sur
le sens de variation de la suite
et sa limite éventuelle. On précisera les éléments sur lesquels on s'appuie pour conjecturer.
- Interpréter géométriquement l'intégrale
- Démontrer que pour tout entier naturel
supérieur ou égal à 1,
En déduire le signe depuis démontrer que la suite
est convergente.
- Déterminer l'expression de
en fonction de
et déterminer la limite de la suite
.
Correction
Tags:ExponentielleFonctionsIntégralesSuites
Voir aussi:
Quelques devoirs
maison de géométrie plane: géométrie plane analytique, vecteurs et équations de droites, exponentielle, tangente
géométrie dans l'espace, vecteurs et équations de plan, représentation paramétrique d&une droite de l'espace, tangente à une courbe, exponentielle
Bac blanc: QCM: fonctions, convexité, suite et programme Python - Probabilités: test pour détecter une maladie - Suites: un peu sur les suites - Géométrie dans l'espace - Fonction logarithme
logarithme népérien: résolution d'équations, étude de fonction, et convexité, points d'inflexion
maison: calculs de dérivées, limites, fonctions et suites récurrentes, démonstration par récurrence et théorème des gendarmes