Aire maximale d'un triangle
Exercice corrigé - Spécialité maths, terminale générale
On considère dans le plan rapporté à un repère orthonormal
, le cercle
de centre
et de
rayon
.
Soit
le point de coordonnées
et
le point de
coordonnées
.
Correction




Soit




- Par tout point
du segment
distinct de
et
, on mène la perpendiculaire
à la doite
.
La droitecoupe le cercle
en
et
.
On pose. Calculer, en fonction de
, l'aire du triangle
.
- Soit
la fonction numérique définie sur
par
, et soit
sa courbe représentative dans un plan rapporté à un repère orthonormal où l'unité de longueur est 4 cm.
- Calculer
et dresser le tableau de variations de
.
- Tracer la courbe
.
- Calculer
- Montrer que le triangle
d'aire maximale est équilatéral.
Correction
Tag:Fonctions
Voir aussi: