Bac 2010 - Représentation paramétrique, distance minimale

Exercice corrigé - Spécialité maths, terminale générale

Bac S, septembre 2010 4 points
L'espace est rapporté à un repère orthonormal . Soit le plan d'équation : et la droite dont une représentation paramétrique est


    1. Le point C(1 ; 3 ; 2) appartient-il au plan ? Justifier.
    2. Démontrer que la droite est incluse dans le plan .
  1. Soit le plan passant par le point C et orthogonal à la droite .
    1. Déterminer une équation cartésienne du plan .
    2. Calculer les coordonnées du point I, point d'intersection du plan et de la droite .
    3. Montrer que CI .
  2. Soit un nombre réel et le point de la droite de coordonnées .
    1. Vérifier que pour tout nombre réel .
    2. Montrer que CI est la valeur minimale de C lorsque décrit l'ensemble des nombres réels.

Correction


Tag:Géométrie dans l'espace

Autres sujets au hasard: Lancer de dés


Voir aussi:
LongPage: h2: 1 - h3: 0