Devoir de maths corrigé, Intégrales
Terminale générale, spécialité mathématiques
Devoir de mathématiques, et corrigé, posé en spé maths, terminale générale, année scolaire 2022/2023
Exercice 1: Quelques calculs d'intégrales
Calculer les intégrales:
;
;
À l'aide d'une intégration par parties, calculer



À l'aide d'une intégration par parties, calculer

Exercice 2: Suite d'intégrales et exponentielle
Bac S, 19 juin 2014, 5 points
Partie A
Dans le plan muni d'un repère orthonormé, on désigne par
la courbe représentative de la fonction
définie sur
par:
Partie B
L'objet de cette partie est d'étudier la suite
définie sur
par:
Partie A
Partie B
Cacher la correction
Partie A
Dans le plan muni d'un repère orthonormé, on désigne par




- Justifier que
passe par le point A de coordonnées
.
- Déterminer le tableau de variation de la fonction
. On précisera les limites de
en
et en
.
Partie B
L'objet de cette partie est d'étudier la suite



- Dans le plan muni d'un repère orthonormé
, pour tout entier naturel
, on note
la courbe représentative de la fonction
définie sur
par
Sur le graphique ci-dessous on a tracé la courbepour plusieurs valeurs de l'entier
et la droite
d'équation
.
- Interpréter géométriquement l'intégrale
.
- En utilisant cette interprétation, formuler une conjecture sur
le sens de variation de la suite
et sa limite éventuelle. On précisera les éléments sur lesquels on s'appuie pour conjecturer.
- Interpréter géométriquement l'intégrale
- Démontrer que pour tout entier naturel
supérieur ou égal à 1,
En déduire le signe depuis démontrer que la suite
est convergente.
- Déterminer l'expression de
en fonction de
et déterminer la limite de la suite
.
Correction exercice 2
Partie A
- On a
et donc
.
- Comme
et
sont définies et dérivables sur
,
est aussi définie et dérivable sur
, comme somme et composéee de fonctions définies et dérivables sur
, avec, pout tout
,
.
De plus,, car la fonction exponentielle est strictement croissante sur
, et ainsi,
.
En,
et
, et donc, par somme des limites,
.
En,
, avec
et
(croissance comparée en l'infini de l'exponentielle et des polynômes).
Ainsi,, et alors, par produit des limites,
.
Partie B
-
-
est l'aire sous la courbe
: l'aire du domaine compris entre les droites verticales d'équation
et
, et entre l'axe des abscisses et la courbe
.
- Il semblerait que la courbe
soit en dessous de la courbe
. On peut donc conjecturer que la suite
est décroissante.
Il semblerait de plus que lorsquedevient grand, la courbe
se rapproche de la diagonale du carré de côté
. On peut ainsi conjecturer que la suite
est convergente, de limite
.
-
- Pour tout entier
,
car.
,
, et
, car la fonction exponentielle est strictement croissante sur
, et donc,
.
On en déduit que pour tout,
, et donc que
Ainsi, la suiteest décroissante.
et pour tout entier
,
, et donc,
, on a
.
Ainsi,est une suite décroissante et minorée par 0:
est donc convergente.
- Pour tout entier
,
Commeet
, on a donc,
, ce qui démontre la conjecture émise au début de cette partie.
Cacher la correction
Exercice 3: Récupérateur d'eau (Bac 2016)
Un particulier veut faire fabriquer un récupérateur d'eau.
Ce récupérateur d'eau est une cuve qui doit respecter le cahier des
charges suivant:
Cette cuve est schématisée ci-dessous.
![$$(-1.8,-0.5)(7,5)
\psplot[plotpoints=4000]{2}{5.437}{x 2 div ln x mul x sub 2 add}
\pspolygon(2,0)(2,1.8)(-1.3,2.5)(-1.3,0.7)
\rput(-3.3,0.7){\psplot[plotpoints=4000]{2}{5.437}{x 2 div ln x mul x sub 2 add}}
\psline(2.1,2.7)(5.4,2)
\psline(-1.3,2.5)(2.1,2.7)
\psline(2,1.8)(5.4,2)
\psline[linewidth=0.5pt](2,1.8)(2,3)\psline[linewidth=0.5pt](-1.3,2.5)(-1.3,3.7)
\psset{arrowsize=2pt 3}
\psline[linewidth=0.5pt,arrowsize=8pt]{<->}(2,3)(-1.3,3.7)
\psline[linewidth=0.5pt](2,1.8)(1.2,1.75)\psline[linewidth=0.5pt](2,0)(1.2,-0.05)
\psline[linewidth=0.5pt,arrowsize=8pt]{<->}(1.2,1.75)(1.2,-0.05)
\uput[l](1.2,0.85){2 m}\uput[u](1.35,3.35){5 m}
$$](/Generateur-Devoirs/TS/ChapIntegration/ex2016-Amerique-du-nord-juin/1.png)
La partie incurvée est modélisée par la courbe
de la
fonction
sur l'intervalle
définie par:
![\[f(x)=x\ln \lp\dfrac{x}{2}\rp-x+2.\]](/Generateur-Devoirs/TS/ChapIntegration/ex2016-Amerique-du-nord-juin/5.png)
La courbe
est représentée ci-dessous dans un repère
orthonormé d'unité 1m et constitue une vue de profil de la cuve.
On considère les points
,
et
.
(-0.2,-0.25)(6,2.5)
\psaxes[linewidth=1.25pt](0,0)(0,0)(6,2.5)
\uput[u](2.8,0.2){$\mathcal{C}_f$}
\pscustom[fillstyle=solid,fillcolor=lightgray]
{\psplot[plotpoints=4000]{2}{5.437}{x 2 div ln x mul x sub 2 add}
\psline(5.437,2)(6,2)
\psline(6,0)(2,0)}
\pscustom[fillstyle=solid,fillcolor=lightgray]
{\psplot[plotpoints=4000]{2}{5.437}{x 2 div ln x mul x sub 2 add}
\psline(5.437,2)(6,2)
\psline(6,0)(2,0)}
\psframe[fillstyle=solid,fillcolor=lightgray](2,2)
\psdots(2,2)(5.437,2)
\psplot[plotpoints=4000]{2}{5.437}{x 2 div ln x mul x sub 2 add}
\psplot[plotpoints=4000]{3}{5.8}{x 2 add 5.437 sub}
\uput[u](2,2){$A$}
\uput[u](5.437,2){$B$}
\uput[ul](5.75,2.2){$\mathcal{T}$}
\uput[dl](2,0){$I$}
\uput[dr](3.437,0){$D$}
\rput(1,1){Terrain}
\rput(3.2,1.2){Cuve}
\rput(4.7,0.5){Terrain}
\psline[linestyle=dotted,linewidth=1.5pt](2,2)(5.437,2)
\end{pspicture*}\]](/Generateur-Devoirs/TS/ChapIntegration/ex2016-Amerique-du-nord-juin/10.png)
Partie A  L'objectif de cette partie est d'évaluer le volume de la cuve.
Partie B  Pour tout réel
compris
entre
et
, on note
le volume d'eau, exprimé en m3, se trouvant dans la cuve lorsque la hauteur d'eau dans la cuve est
égale à
.
On admet que, pour tout réel
de l'intervalle [2 ; 2e],
![\[v(x) = 5\left[\dfrac{x^2}{2}\ln \left( \dfrac{x}{2}\right) - 2x\ln\left( \dfrac{x}{2}\right) - \dfrac{x^2}{4} + 2x - 3\right].\]](/Generateur-Devoirs/TS/ChapIntegration/ex2016-Amerique-du-nord-juin/49.png)
{\n}}
}
\pspolygon[fillstyle=solid,fillcolor=gray](2,0.1)(2,1.5)(0.35,2.3)(0.35,0.9)
\pspolygon[fillstyle=solid,fillcolor=gray](2,1.5)(0.35,2.3)(3.37,2.47)(5.08,1.7)
\pscustom[fillstyle=solid,fillcolor=gray]{
\pscurve(2,0.1)(3,0.316)(4,0.87)(5.08,1.75)
\psline(5.08,1.75)(2,1.5)
}
\pspolygon(5.437,2.1)(2,1.85)(0.35,2.7)(3.787,2.95)
\psline(2,1.85)(2,1.5)
\psline(0.35,2.7)(0.35,2.3)
\pscurve(0.35,0.9)(1.35,1.16)(2.35,1.72)(3.35,2.5)(3.787,2.95)
\psline[linestyle=dotted,linewidth=1.5pt](5.08,0.2)(5.08,1.75)(0,1.37)
\uput[d](5.2,0.3){$x$}
\uput[l](0,1.37){$f(x)$}
\multido{\n=0+1}{4}{\uput[l](0,\n){\n}}
\end{pspicture}\]](/Generateur-Devoirs/TS/ChapIntegration/ex2016-Amerique-du-nord-juin/50.png)
Bac S - Amérique du nord, 1er juin 2016 6 points
Partie A 
Partie B
Cacher la correction
- elle doit être située à deux mètres de sa maison;
- la profondeur maximale doit être de deux mètres;
- elle doit mesurer cinq mètres de long;
- elle doit épouser la pente naturelle du terrain.
Cette cuve est schématisée ci-dessous.
![$$(-1.8,-0.5)(7,5)
\psplot[plotpoints=4000]{2}{5.437}{x 2 div ln x mul x sub 2 add}
\pspolygon(2,0)(2,1.8)(-1.3,2.5)(-1.3,0.7)
\rput(-3.3,0.7){\psplot[plotpoints=4000]{2}{5.437}{x 2 div ln x mul x sub 2 add}}
\psline(2.1,2.7)(5.4,2)
\psline(-1.3,2.5)(2.1,2.7)
\psline(2,1.8)(5.4,2)
\psline[linewidth=0.5pt](2,1.8)(2,3)\psline[linewidth=0.5pt](-1.3,2.5)(-1.3,3.7)
\psset{arrowsize=2pt 3}
\psline[linewidth=0.5pt,arrowsize=8pt]{<->}(2,3)(-1.3,3.7)
\psline[linewidth=0.5pt](2,1.8)(1.2,1.75)\psline[linewidth=0.5pt](2,0)(1.2,-0.05)
\psline[linewidth=0.5pt,arrowsize=8pt]{<->}(1.2,1.75)(1.2,-0.05)
\uput[l](1.2,0.85){2 m}\uput[u](1.35,3.35){5 m}
$$](/Generateur-Devoirs/TS/ChapIntegration/ex2016-Amerique-du-nord-juin/1.png)
La partie incurvée est modélisée par la courbe


![$[2;2e]$](/Generateur-Devoirs/TS/ChapIntegration/ex2016-Amerique-du-nord-juin/4.png)
![\[f(x)=x\ln \lp\dfrac{x}{2}\rp-x+2.\]](/Generateur-Devoirs/TS/ChapIntegration/ex2016-Amerique-du-nord-juin/5.png)
La courbe

On considère les points



(-0.2,-0.25)(6,2.5)
\psaxes[linewidth=1.25pt](0,0)(0,0)(6,2.5)
\uput[u](2.8,0.2){$\mathcal{C}_f$}
\pscustom[fillstyle=solid,fillcolor=lightgray]
{\psplot[plotpoints=4000]{2}{5.437}{x 2 div ln x mul x sub 2 add}
\psline(5.437,2)(6,2)
\psline(6,0)(2,0)}
\pscustom[fillstyle=solid,fillcolor=lightgray]
{\psplot[plotpoints=4000]{2}{5.437}{x 2 div ln x mul x sub 2 add}
\psline(5.437,2)(6,2)
\psline(6,0)(2,0)}
\psframe[fillstyle=solid,fillcolor=lightgray](2,2)
\psdots(2,2)(5.437,2)
\psplot[plotpoints=4000]{2}{5.437}{x 2 div ln x mul x sub 2 add}
\psplot[plotpoints=4000]{3}{5.8}{x 2 add 5.437 sub}
\uput[u](2,2){$A$}
\uput[u](5.437,2){$B$}
\uput[ul](5.75,2.2){$\mathcal{T}$}
\uput[dl](2,0){$I$}
\uput[dr](3.437,0){$D$}
\rput(1,1){Terrain}
\rput(3.2,1.2){Cuve}
\rput(4.7,0.5){Terrain}
\psline[linestyle=dotted,linewidth=1.5pt](2,2)(5.437,2)
\end{pspicture*}\]](/Generateur-Devoirs/TS/ChapIntegration/ex2016-Amerique-du-nord-juin/10.png)
Partie A  L'objectif de cette partie est d'évaluer le volume de la cuve.
- Justifier que les points
et
appartiennent à la courbe
et que l'axe des abscisses est tangent à la courbe
au point
.
- On note
la tangente à la courbe
au point
, et
le point d'intersection de la droite
avec l'axe des abscisses.
- Déterminer une équation de la droite
et en déduire les coordonnées de
.
- On appelle
l'aire du domaine délimité par la courbe
, les droites d'équations
,
et
.
peut être encadrée par l'aire du triangle
et celle du trapèze
.
Quel encadrement du volume de la cuve peut-on en déduire ?
- Déterminer une équation de la droite
-
- Montrer que, sur l'intervalle
, la fonction
définie par
est une primitive de la fonctiondéfinie par
.
- En déduire une primitive
de la fonction
sur l'intervalle
.
- Déterminer la valeur exacte de l'aire
et en déduire une valeur approchée du volume
de la cuve au m3 près.
- Montrer que, sur l'intervalle
Partie B  Pour tout réel





On admet que, pour tout réel

![\[v(x) = 5\left[\dfrac{x^2}{2}\ln \left( \dfrac{x}{2}\right) - 2x\ln\left( \dfrac{x}{2}\right) - \dfrac{x^2}{4} + 2x - 3\right].\]](/Generateur-Devoirs/TS/ChapIntegration/ex2016-Amerique-du-nord-juin/49.png)
{\n}}
}
\pspolygon[fillstyle=solid,fillcolor=gray](2,0.1)(2,1.5)(0.35,2.3)(0.35,0.9)
\pspolygon[fillstyle=solid,fillcolor=gray](2,1.5)(0.35,2.3)(3.37,2.47)(5.08,1.7)
\pscustom[fillstyle=solid,fillcolor=gray]{
\pscurve(2,0.1)(3,0.316)(4,0.87)(5.08,1.75)
\psline(5.08,1.75)(2,1.5)
}
\pspolygon(5.437,2.1)(2,1.85)(0.35,2.7)(3.787,2.95)
\psline(2,1.85)(2,1.5)
\psline(0.35,2.7)(0.35,2.3)
\pscurve(0.35,0.9)(1.35,1.16)(2.35,1.72)(3.35,2.5)(3.787,2.95)
\psline[linestyle=dotted,linewidth=1.5pt](5.08,0.2)(5.08,1.75)(0,1.37)
\uput[d](5.2,0.3){$x$}
\uput[l](0,1.37){$f(x)$}
\multido{\n=0+1}{4}{\uput[l](0,\n){\n}}
\end{pspicture}\]](/Generateur-Devoirs/TS/ChapIntegration/ex2016-Amerique-du-nord-juin/50.png)
- Quel volume d'eau, au m3 près, y a-t-il dans la cuve lorsque la hauteur d'eau dans la cuve est de un mètre ?
- On rappelle que
est le volume total de la cuve,
est la fonction définie en début d'exercice et
la fonction définie dans la partie B.
On considère l'algorithme ci-dessous.
Interpréter le résultat que cet algorithme permet d'afficher.
Correction exercice 3
Bac S - Amérique du nord, 1er juin 2016 6 points
Partie A 
- On a
, car
, et donc
.
De même,, car
, et donc
.
De plus, enle coefficient directeur de la tangente à
est
.
On a, pour tout,
, soit
, avec
, donc
,
, donc
, et
, donc
.
On a alors,, soit
.
Ainsi, la tangente àen
a pour coefficient directeur
et passe par
: c'est l'axe des abscisses.
-
- Une équation de
est:
, avec
et
, d'où
.
On a alorsavec
. Ainsi,
.
- L'aire de
, trangle rectangle en
, est
et l'aire du trapèzeest
.
Ainsi le volumede la cuve est tel que
soit approximativement
- Une équation de
-
- On a
avec
, donc
,
, donc
, et
, donc
.
On a alors,, soit
ce qui montre queest bien une primitive de
.
- On en déduit qu'une primitive de
définie par
est donnée par
- On peut alors calculer l'intégrale:
avec, et
, donc
et on en déduit le volume de la cuve:.
- On a
Partie B
- Le volume est
avec
tel que
. On cherche donc à résoudre l'équation
, avec
.
On ne sait pas résoudre excactement cette équation. On peut par contre le faire de manière approchée, en utilisant le théorème des valeurs intermédiaires.
On sait que, d'après A.1. et donc, comme
est strictement croissante sur
, que pour tout
,
.
Ainsiest strictement croissante sur
, avec de plus
et
. On en déduit, d'après le corollaire du théorème des valeurs intermédiaires (ou théorème de la bijection), qu'il existe une unique solution
à l'équation
.
Avec la calculatrice (à l'aide d'un tableau de valeurs, ou par dichotomie par exemple), on trouve, et alors le volume est de
.
- Cet algorithme est un algorithme de recherche par dichotomie.
Il permet de chercher les valeurs d'un encadrementpour lequel la hauteur
correspond à la moitié de la cuve.
Cet encadrement permet d'avoir un résultat précis àprès.
Cacher la correction
Quelques autres devoirs
Devoir corrigéIntégrales
intégration, Calculs d'intégrales - Suite d'intégrales (Bac S, 19 juin 2014) - Dimensionnement d'un récupérateur d'eau (Bac S - Amérique du nord, 1er juin 2016)
Devoir corrigéIntégrales
intégration, Calculs d'intégrales - Aire sous une courbe (Bac S - métropole, 11 septembre 2014) - Aire entre deux courbes (Bac S, juin 2008)
Devoir corrigéIntégrale, suites d'intégrales, IPP
sur les intégrales: calcul d'intégrales, suite d'intégrales, et un calcul de volume
Devoir corrigéIntégrale, suites d'intégrales, IPP
sur les intégrales: calcul d'intégrales, suite d'intégrales
Voir aussi: