Bac 2022 (12 mai 2022): Trajectoire d'une balle de golf

Exercice corrigé - Spécialité maths, terminale générale

Partie A : études de deux fonctions

On considère les deux fonctions $f$ et $g$ définies sur l'intervalle $[0~;~+\infty[$ par:

\[f(x) = 0,06\left(-x^2 +13,7x\right)\quad  \text{et}\quad  g(x) = (-0,15x + 2,2)e^{0,2x} - 2,2.\]


On admet que les fonctions $f$ et $g$ sont dérivables et on note $f'$ et $g'$ leurs fonctions dérivées respectives.


  1. On donne le tableau de variations complet de la fonction $f$ sur l'intervalle $[0~;~+\infty[$.

    \[\psset{unit=1cm,arrowsize=2pt 3}
\begin{pspicture}(6.5,2)
\psframe(6.5,2)\psline(0,1.5)(6.5,1.5)\psline(1.5,0)(1.5,2)
\uput[u](0.75,1.4){$x$} \uput[u](1.6,1.4){$0$} \uput[u](4,1.4){$6,85$} \uput[u](6,1.4){$+ \infty$} 
\rput(0.75,0.75){$f(x)$}\uput[u](1.65,0){$0$}\uput[d](4,1.5){$f(6,85)$}\uput[u](6,0){$- \infty$}
\psline{->}(1.9,0.4)(3.2,1.1)\psline{->}(4.8,1.1)(5.7,0.4)
\end{pspicture}\]


    1. Justifier la limite de $f$ en $+\infty$.
    2. Justifier les variations de la fonction $f$.
    3. Résoudre l'équation $f(x) = 0$.
    1. Déterminer la limite de $g$ en $+\infty$.
    2. Démontrer que, pour tout réel $x$ appartenant à $[0~;~+\infty[$ on a : $g'(x) = (- 0,03x + 0,29)e^{0,2x}$.
    3. Étudier les variations de la fonction $g$ et dresser son tableau de variations sur $[0~;~+\infty[$.
      Préciser une valeur approchée à $10^{-2}$ près du maximum de $g$.
    4. Montrer que l'équation $g(x) = 0$ admet une unique solution non nulle et déterminer, à $10^{-2}$ près, une valeur approchée de cette solution.




Partie B : trajectoires d'une balle de golf


Pour frapper la balle, un joueur de golf utilise un instrument appelé « club»  de golf.
On souhaite exploiter les fonctions $f$ et $g$ étudiées en Partie A pour modéliser de deux façons différentes la trajectoire d'une balle de golf. On suppose que le terrain est parfaitement plat.
On admettra ici que $13,7$ est la valeur qui annule la fonction $f$ et une approximation de la valeur qui annule la fonction $g$.
On donne ci-dessous les représentations graphiques de $f$ et $g$ sur l'intervalle [0 ; 13,7].

$$(-1,-1)(14,3.5)
\psgrid[gridlabels=0pt,subgriddiv=1,gridwidth=0.2pt]
\psaxes[linewidth=1.25pt,Dx=20,Dy=20]{->}(0,0)(-1,-1)(14,3.5)
\psplot[plotpoints=1000,linewidth=1.25pt,linecolor=red]{0}{13.7}{13.7 x mul x dup mul sub 0.06 mul}\uput[ul](3,2){\red $\mathcal{C}_f$}
\psplot[plotpoints=1000,linewidth=1.25pt,linecolor=blue]{0}{13.7}{2.2 0.15 x mul sub 2.71828 0.2 x mul exp mul 2.2 sub}\uput[ur](12,2.2){\blue $\mathcal{C}_g$}
\uput[dl](0,0){0}\uput[d](1,0){1}\uput[l](0,1){1}\uput[d](13.7,0){13,7}
$$


Pour $x$ représentant la distance horizontale parcourue par la balle en dizaine de yards après la frappe, (avec $0 < x < 13,7$), $f(x)$ (ou $g(x)$ selon le modèle) représente la hauteur correspondante de la balle par rapport au sol, en dizaine de yards (1 yard correspond à environ $0,914$ mètre).
On appelle « angle de décollage »  de la balle, l'angle entre l'axe des abscisses et la tangente à la courbe ($\mathcal{C}_f$ ou $\mathcal{C}_g$ selon le modèle) en son point d'abscisse $0$. Une mesure de l'angle de décollage de la balle est un nombre réel $d$ tel que $\tan (d)$ est égal au coefficient directeur de cette tangente.
De même, on appelle « angle d'atterrissage »  de la balle, l'angle entre l'axe des abscisses et la tangente à la courbe ($\mathcal{C}_f$ ou $\mathcal{C}_g$ selon le modèle) en son point d'abscisse $13,7$. Une mesure de l'angle d'atterrissage de la balle est un nombre réel $a$ tel que $\tan (a)$ est égal à l'opposé du coefficient directeur de cette tangente.
Tous les angles sont mesurés en degré.

\[\begin{tabular}{|*2{p{8cm}|}}\hline
Le sch\'ema illustre les angles de d\'ecollage et d'atterrissage associ\'es \`a la courbe 
$\mathcal{C}_f$&Le sch\'ema illustre les angles de d\'ecollage et d'atterrissage
associ\'es \`a la courbe $\mathcal{C}_g$.\\ \hline
\psset{unit=0.5cm}
\begin{pspicture}(-0.3,-0.75)(14,3.5)
%\psgrid
\psaxes[linewidth=1.25pt,Dx=20,Dy=10](0,0)(-0.3,-0.3)(14,3)
\psplot[plotpoints=1000]{0}{2}{0.822 x mul}
\psplot[plotpoints=1000,linewidth=1.25pt,linecolor=red]{0}{13.7}{13.7 x mul x dup mul sub 0.06 mul}\uput[ul](3,2){\red $\mathcal{C}_f$}
\psline(13.7,0)(11,2)
\psarc(0,0){0.7}{0}{40}\rput(1.2,0.5){\footnotesize $d$}
\psarc(13.7,0){0.7}{140}{180}\rput(12.4,0.5){\footnotesize $a$}
\uput[d](13.7,0){\footnotesize 13,7}
\end{pspicture}&\psset{unit=0.5cm}
\begin{pspicture}(-0.3,-0.75)(14,3.5)
%\psgrid
\psaxes[linewidth=1.25pt,Dx=20,Dy=10](0,0)(-0.3,-0.5)(14,3)
\psplot[plotpoints=1000,linewidth=1.25pt,linecolor=blue]{0}{13.7}{2.2 0.15 x mul sub 2.71828 0.2 x mul exp mul 2.2 sub}
\psline(0,0)(10.4,2.8)
\psline(13.7,0)(12,2.9)
\psarc(0,0){1}{0}{20}\rput(2,0.25){\footnotesize $d$}
\psarc(13.7,0){1}{120}{180}\rput(12.4,0.5){\footnotesize $a$}
\uput[d](13.7,0){\footnotesize 13,7}
\end{pspicture}\\ \hline
\end{tabular}\]




  1. Première modélisation : on rappelle qu'ici, l'unité étant la dizaine de yards, $x$ représente la distance horizontale parcourue par la balle après la frappe et $f(x)$ la hauteur correspondante de la balle.
    Selon ce modèle :
    1. Quelle est la hauteur maximale, en yard, atteinte par la balle au cours de sa trajectoire ?
    2. Vérifier que $f'(0) = 0,822$.
    3. Donner une mesure en degré de l'angle de décollage de la balle, arrondie au dixième. (On pourra éventuellement utiliser le tableau ci-dessous).
    4. Quelle propriété graphique de la courbe $\mathcal{C}_f$ permet de justifier que les angles de décollage et d'atterrissage de la balle sont égaux ?
  2. Seconde modélisation : on rappelle qu'ici, l'unité étant la dizaine de yards, $x$ représente la distance horizontale parcourue par la balle après la frappe et $g(x)$ la hauteur correspondante de la balle. Selon ce modèle :
    1. Quelle est la hauteur maximale, en yard, atteinte par la balle au cours de sa trajectoire ? On précise que $g'(0) = 0,29$ et $g'(13,7) \approx -1,87$.
    2. Donner une mesure en degré de l'angle de décollage de la balle, arrondie au dixième. (On pourra éventuellement utiliser le tableau ci-dessous).
    3. Justifier que $62$ est une valeur approchée, arrondie à l'unité près, d'une mesure en degré de l'angle d'atterrissage de la balle.


    Tableau : extrait d'une feuille de calcul donnant une mesure en degré d'un angle quand on connait sa tangente :

    \[%\begin{tabularx}{\linewidth}{|c|*{13}{>{\centering \arraybackslash}X|}}
\begin{tabular}{|c|p{2em}|*{12}{c|}}
\hline
&A&B&C&D&E&F&G&H&I&J&K&L&M\\ \hline
1&$\!\!\tan(\theta)$&0,815&0,816&0,817&0,818&0,819&0,82&0,821&0,822&0,823&0,824&0,825&0,826\\ \hline
2&\scriptsize \mbox{$\theta$ en} degr\'es&39,18&39,21&39,25&39,28&39,32&39,35&39,39&39,42&39,45&39,49&39,52&39,56\\ \hline
3&	&&&&&&&&&&&&\\ \hline
4&$\!\!\tan(\theta)$&0,285& 0,286& 0,287& 0,288& 0,289&0,29&0,291&0,292&
0,293&0,294&0,295 &0,296\\ \hline
5&\scriptsize  \mbox{$\theta$ en} degr\'es&15,91 &15,96&16,01& 16,07& 16,12& 16,17& 16,23& 16,28& 16,33& 16,38& 16,44& 16,49\\ \hline
\end{tabular}\]





Partie C : interrogation des modèles

À partir d'un grand nombre d'observations des performances de joueurs professionnels, on a obtenu les résultats moyens suivants:

\[\begin{tabular}{|*4{p{4.2cm}|}}\hline
  Angle de d\'ecollage en degr\'e
  &Hauteur maximale en yard
  &Angle d'atterrissage en degr\'e
  &Distance horizontale en yard au point de chute\\ \hline
  24&32&52&137\\ \hline
\end{tabular}\]


Quel modèle, parmi les deux étudiés précédemment, semble le plus adapté pour décrire la frappe de la balle par un joueur professionnel ? La réponse sera justifiée. Partie A : études de deux fonctions

On considère les deux fonctions $f$ et $g$ définies sur l'intervalle $[0~;~+\infty[$ par:

\[f(x) = 0,06\left(-x^2 +13,7x\right)\quad  \text{et}\quad  g(x) = (-0,15x + 2,2)e^{0,2x} - 2,2.\]


On admet que les fonctions $f$ et $g$ sont dérivables et on note $f'$ et $g'$ leurs fonctions dérivées respectives.


  1. On donne le tableau de variations complet de la fonction $f$ sur l'intervalle $[0~;~+\infty[$.

    \[\psset{unit=1cm,arrowsize=2pt 3}
\begin{pspicture}(6.5,2)
\psframe(6.5,2)\psline(0,1.5)(6.5,1.5)\psline(1.5,0)(1.5,2)
\uput[u](0.75,1.4){$x$} \uput[u](1.6,1.4){$0$} \uput[u](4,1.4){$6,85$} \uput[u](6,1.4){$+ \infty$} 
\rput(0.75,0.75){$f(x)$}\uput[u](1.65,0){$0$}\uput[d](4,1.5){$f(6,85)$}\uput[u](6,0){$- \infty$}
\psline{->}(1.9,0.4)(3.2,1.1)\psline{->}(4.8,1.1)(5.7,0.4)
\end{pspicture}\]


    1. Justifier la limite de $f$ en $+\infty$.
    2. Justifier les variations de la fonction $f$.
    3. Résoudre l'équation $f(x) = 0$.
    1. Déterminer la limite de $g$ en $+\infty$.
    2. Démontrer que, pour tout réel $x$ appartenant à $[0~;~+\infty[$ on a : $g'(x) = (- 0,03x + 0,29)e^{0,2x}$.
    3. Étudier les variations de la fonction $g$ et dresser son tableau de variations sur $[0~;~+\infty[$.
      Préciser une valeur approchée à $10^{-2}$ près du maximum de $g$.
    4. Montrer que l'équation $g(x) = 0$ admet une unique solution non nulle et déterminer, à $10^{-2}$ près, une valeur approchée de cette solution.




Partie B : trajectoires d'une balle de golf


Pour frapper la balle, un joueur de golf utilise un instrument appelé « club»  de golf.
On souhaite exploiter les fonctions $f$ et $g$ étudiées en Partie A pour modéliser de deux façons différentes la trajectoire d'une balle de golf. On suppose que le terrain est parfaitement plat.
On admettra ici que $13,7$ est la valeur qui annule la fonction $f$ et une approximation de la valeur qui annule la fonction $g$.
On donne ci-dessous les représentations graphiques de $f$ et $g$ sur l'intervalle [0 ; 13,7].

$$(-1,-1)(14,3.5)
\psgrid[gridlabels=0pt,subgriddiv=1,gridwidth=0.2pt]
\psaxes[linewidth=1.25pt,Dx=20,Dy=20]{->}(0,0)(-1,-1)(14,3.5)
\psplot[plotpoints=1000,linewidth=1.25pt,linecolor=red]{0}{13.7}{13.7 x mul x dup mul sub 0.06 mul}\uput[ul](3,2){\red $\mathcal{C}_f$}
\psplot[plotpoints=1000,linewidth=1.25pt,linecolor=blue]{0}{13.7}{2.2 0.15 x mul sub 2.71828 0.2 x mul exp mul 2.2 sub}\uput[ur](12,2.2){\blue $\mathcal{C}_g$}
\uput[dl](0,0){0}\uput[d](1,0){1}\uput[l](0,1){1}\uput[d](13.7,0){13,7}
$$


Pour $x$ représentant la distance horizontale parcourue par la balle en dizaine de yards après la frappe, (avec $0 < x < 13,7$), $f(x)$ (ou $g(x)$ selon le modèle) représente la hauteur correspondante de la balle par rapport au sol, en dizaine de yards (1 yard correspond à environ $0,914$ mètre).
On appelle « angle de décollage »  de la balle, l'angle entre l'axe des abscisses et la tangente à la courbe ($\mathcal{C}_f$ ou $\mathcal{C}_g$ selon le modèle) en son point d'abscisse $0$. Une mesure de l'angle de décollage de la balle est un nombre réel $d$ tel que $\tan (d)$ est égal au coefficient directeur de cette tangente.
De même, on appelle « angle d'atterrissage »  de la balle, l'angle entre l'axe des abscisses et la tangente à la courbe ($\mathcal{C}_f$ ou $\mathcal{C}_g$ selon le modèle) en son point d'abscisse $13,7$. Une mesure de l'angle d'atterrissage de la balle est un nombre réel $a$ tel que $\tan (a)$ est égal à l'opposé du coefficient directeur de cette tangente.
Tous les angles sont mesurés en degré.

\[\begin{tabular}{|*2{p{8cm}|}}\hline
Le sch\'ema illustre les angles de d\'ecollage et d'atterrissage associ\'es \`a la courbe 
$\mathcal{C}_f$&Le sch\'ema illustre les angles de d\'ecollage et d'atterrissage
associ\'es \`a la courbe $\mathcal{C}_g$.\\ \hline
\psset{unit=0.5cm}
\begin{pspicture}(-0.3,-0.75)(14,3.5)
%\psgrid
\psaxes[linewidth=1.25pt,Dx=20,Dy=10](0,0)(-0.3,-0.3)(14,3)
\psplot[plotpoints=1000]{0}{2}{0.822 x mul}
\psplot[plotpoints=1000,linewidth=1.25pt,linecolor=red]{0}{13.7}{13.7 x mul x dup mul sub 0.06 mul}\uput[ul](3,2){\red $\mathcal{C}_f$}
\psline(13.7,0)(11,2)
\psarc(0,0){0.7}{0}{40}\rput(1.2,0.5){\footnotesize $d$}
\psarc(13.7,0){0.7}{140}{180}\rput(12.4,0.5){\footnotesize $a$}
\uput[d](13.7,0){\footnotesize 13,7}
\end{pspicture}&\psset{unit=0.5cm}
\begin{pspicture}(-0.3,-0.75)(14,3.5)
%\psgrid
\psaxes[linewidth=1.25pt,Dx=20,Dy=10](0,0)(-0.3,-0.5)(14,3)
\psplot[plotpoints=1000,linewidth=1.25pt,linecolor=blue]{0}{13.7}{2.2 0.15 x mul sub 2.71828 0.2 x mul exp mul 2.2 sub}
\psline(0,0)(10.4,2.8)
\psline(13.7,0)(12,2.9)
\psarc(0,0){1}{0}{20}\rput(2,0.25){\footnotesize $d$}
\psarc(13.7,0){1}{120}{180}\rput(12.4,0.5){\footnotesize $a$}
\uput[d](13.7,0){\footnotesize 13,7}
\end{pspicture}\\ \hline
\end{tabular}\]




  1. Première modélisation : on rappelle qu'ici, l'unité étant la dizaine de yards, $x$ représente la distance horizontale parcourue par la balle après la frappe et $f(x)$ la hauteur correspondante de la balle.
    Selon ce modèle :
    1. Quelle est la hauteur maximale, en yard, atteinte par la balle au cours de sa trajectoire ?
    2. Vérifier que $f'(0) = 0,822$.
    3. Donner une mesure en degré de l'angle de décollage de la balle, arrondie au dixième. (On pourra éventuellement utiliser le tableau ci-dessous).
    4. Quelle propriété graphique de la courbe $\mathcal{C}_f$ permet de justifier que les angles de décollage et d'atterrissage de la balle sont égaux ?
  2. Seconde modélisation : on rappelle qu'ici, l'unité étant la dizaine de yards, $x$ représente la distance horizontale parcourue par la balle après la frappe et $g(x)$ la hauteur correspondante de la balle. Selon ce modèle :
    1. Quelle est la hauteur maximale, en yard, atteinte par la balle au cours de sa trajectoire ? On précise que $g'(0) = 0,29$ et $g'(13,7) \approx -1,87$.
    2. Donner une mesure en degré de l'angle de décollage de la balle, arrondie au dixième. (On pourra éventuellement utiliser le tableau ci-dessous).
    3. Justifier que $62$ est une valeur approchée, arrondie à l'unité près, d'une mesure en degré de l'angle d'atterrissage de la balle.


    Tableau : extrait d'une feuille de calcul donnant une mesure en degré d'un angle quand on connait sa tangente :

    \[%\begin{tabularx}{\linewidth}{|c|*{13}{>{\centering \arraybackslash}X|}}
\begin{tabular}{|c|p{2em}|*{12}{c|}}
\hline
&A&B&C&D&E&F&G&H&I&J&K&L&M\\ \hline
1&$\!\!\tan(\theta)$&0,815&0,816&0,817&0,818&0,819&0,82&0,821&0,822&0,823&0,824&0,825&0,826\\ \hline
2&\scriptsize \mbox{$\theta$ en} degr\'es&39,18&39,21&39,25&39,28&39,32&39,35&39,39&39,42&39,45&39,49&39,52&39,56\\ \hline
3&	&&&&&&&&&&&&\\ \hline
4&$\!\!\tan(\theta)$&0,285& 0,286& 0,287& 0,288& 0,289&0,29&0,291&0,292&
0,293&0,294&0,295 &0,296\\ \hline
5&\scriptsize  \mbox{$\theta$ en} degr\'es&15,91 &15,96&16,01& 16,07& 16,12& 16,17& 16,23& 16,28& 16,33& 16,38& 16,44& 16,49\\ \hline
\end{tabular}\]





Partie C : interrogation des modèles

À partir d'un grand nombre d'observations des performances de joueurs professionnels, on a obtenu les résultats moyens suivants:

\[\begin{tabular}{|*4{p{4.2cm}|}}\hline
  Angle de d\'ecollage en degr\'e
  &Hauteur maximale en yard
  &Angle d'atterrissage en degr\'e
  &Distance horizontale en yard au point de chute\\ \hline
  24&32&52&137\\ \hline
\end{tabular}\]


Quel modèle, parmi les deux étudiés précédemment, semble le plus adapté pour décrire la frappe de la balle par un joueur professionnel ? La réponse sera justifiée.

Correction

Partie A : études de deux fonctions

    1. On a, pour tout $x>0$,
      \[f(x)=-0,06x^2\lp1-\dfrac{13,7}x\rp\]

      avec
      \[\lim_{x\to+\infty}-0,06x^2=-\infty\]

      et
      \[\lim_{x\to+\infty}\lp1-\dfrac{13,7}x\rp=1\]

      d'où, par produit, la limite
      \[\lim_{x\to+\infty}f(x)=-\infty\]

    2. On a $f'(x)=0,06(-2x+13,7)$ d'où le tableau de signes et de variations
      \[\begin{tabular}{|c|*5c|}\hline
  $x$ & 0 && 6,85 && $+\infty$ \\\hline
  $-2x+13,7$&& $+$ &\zb&$-$&\\\hline
  $f'(x)$&& $+$ &\zb&$-$&\\\hline
  &&&$f(6,85)$&&\\
  $f$&&\Large{$\nearrow$}&&\Large{$\searrow$}&\\
  &&&&&\\\hline
  \end{tabular}\]


    3. On a
      \[\begin{array}{ll}f(x) = 0&\iff -x^2+13,7x=0\\
  &\iff x(-x+13,7)=0\\
  &\iff x=0 \text{ ou } x=13,7\enar\]

    1. On a
      \[\lim_{x\to+\infty}(-0,15x+2,2)=-\infty\]

      et
      \[\lim_{x\to+\infty}e^{0,2x}=+\infty\]

      et donc, par produit,
      \[\lim_{x\to+\infty}(-0,15x+2,2)e^{0,2x}=-\infty\]

      et donc aussi,
      \[\lim_{x\to+\infty}g(x)=-\infty\]


    2. On a $g=u\,v$ avec $u(x)=-0,15x+2,2$ et $u'(x)=-0,15$ et $v(x)=e^{0,2x}=e^{w(x)}$ donc $v'(x)=w'(x)e^{w(x)}=0,2e^{0,2x}$.
      On obtient donc $g'=u'v+uv'$, soit pour tout $x>0$,
      \[\begin{array}{ll}g'(x)&=-0,15e^{0,2x}+(-0,15x+2,2)\tm0,2e^{0,2x}\\
    &=\Bigl(-0,15+0,2(-0,15x+2,2)\Bigr)e^{0,2x}\\
    &=\lp-0,03x+0,29\right) e^{0,2x}
    \enar\]


    3. On obtient alors le tableau de signes et de variations:
      \[\begin{tabular}{|c|*5c|}\hline
  $x$ & 0 && $29/3$ && $+\infty$ \\\hline
  $-0,03x+0,29$&& $+$ &\zb&$-$&\\\hline
  $e^{0,2x}$&& $+$ &\vline&$+$&\\\hline
  $g'(x)$&& $+$ &\zb&$-$&\\\hline
  &&&$g\lp29/3\rp$&&\\
  $g$&&\Large{$\nearrow$}&&\Large{$\searrow$}&\\
  &0&&&&$-\infty$\\\hline
  \end{tabular}\]


      On trouve comme valeur maximale
      \[g\lp\dfrac{29}3\rp\simeq2,98\]

    4. on a pour tout $x\in]0;29/3]$, $g(x)>0$ et donc l'équation $g(x)=0$ n'admet aucune soltuion.
      Sur $[29/3;+\infty[$, la fonction $g$ est continue (car même dérivable), strictement décroissante avec $g\lp29/3\rp>0$ et $\dsp\lim_{x\to+\infty}g(x)<0$.
      Ainsi, d'après le théorème des valeurs intermédiaires, ou théorème de la bijection, l'équation $g(x) = 0$ admet une unique solution sur $[29/3;+\infty[$.
      Finalement, l'équation $g(x)=0$ admet une unique solution sur $]0;+\infty[$, c'est-à-dire une unique solution non nulle.
      Avec la calculatrice, par balayage ou dichotomie par exemple, on trouve comme valeur approchée de cette solution $13,72$.


Partie B : trajectoires d'une balle de golf
  1. Première modélisation : on rappelle qu'ici, l'unité étant la dizaine de yards, $x$ représente la distance horizontale parcourue par la balle après la frappe et $f(x)$ la hauteur correspondante de la balle.
    Selon ce modèle :
    1. On a vu que le maximum de $f$ est $f(6,85)\simeq2,815$ soit une hauteur maximale de 28,15 yards.
    2. On a $f'(x)=0,06(-2x+13,7)$, d'où $f'(0)=0,06\tm13,7=0,822$.
    3. $f'(0)$ est le coefficient directeur de la tangente à la courbe de $f$ en 0, c'est-à-dire justement au décollage.
      On a donc $f'(0)=\tan(\theta)$ et donc, d'après le tableau donné dans l'énoncé, $\theta\simeq39,42\,\text{degr\'e}$.
    4. La courbe est une parabole. En particulier, elle est symétrique par rapport à la droite $x=6,85$, abscisse de son sommet. Les points de décollage $x=0$ et d'atterissage $x=13,7$ sont symétriques eux aussi par rapport à cette droite, et il en est donc de même des angles que forment les tangentes à la courbes en ces deux points, c'est-à-dire que les angles de décollage et d'atterrissage de la balle sont égaux.
  2. Seconde modélisation
    1. D'après ce modèle, la hauteur maximale est
      \[g\lp\dfrac{29}3\rp\simeq2,98\]

      soit 29,8 yard. On précise que et $g'(13,7) \approx -1,87$.
    2. $g'(0) = 0,29=\tan(d)$ soit, d'après le tableau foruni, $d\simeq16,17\,\text{degr\'e}$.
    3. De même pour l'angle d'atterissage, $g'(13,17)\simeq-1,87=\tan(\alpha)$ soit $\alpha\simeq\arctan(-1,87)\simeq-61,8$ soit, arrondie à l'unité près, environ 62 degrés.

Partie C : interrogation des modèles

Les angles de décollage et d'atterissage sont très clairement différents, et le modèle parabolique de la fonction $f$ n'est donc clairement pas adapté.
La hauteur maximale est aussi mieux approchée par le second modèle.

Parmi les deux modèles étudiés, le modèle fourni par la fonction $g$ semble donc le plus adapté.



Cacher la correction


Tag:Exponentielle

Autres sujets au hasard: Lancer de dés


Voir aussi:
LongPage: h2: 1 - h3: 0