Réalisation d'un récupérateur d'eau
Bac S - Amérique du nord, 2016
Un particulier veut faire fabriquer un récupérateur d'eau. Ce récupérateur d'eau est une cuve qui doit respecter le cahier des charges suivant:- elle doit être située à deux mètres de sa maison;
- la profondeur maximale doit être de deux mètres;
- elle doit mesurer cinq mètres de long;
- elle doit épouser la pente naturelle du terrain.
La partie incurvée est modélisée par la courbe de la fonction sur l'intervalle définie par:
La courbe est représentée ci-dessous dans un repère orthonormé d'unité 1m et constitue une vue de profil de la cuve.
On considère les points , et .
Partie A  L'objectif de cette partie est d'évaluer le volume de la cuve.
- Justifier que les points et appartiennent à la courbe et que l'axe des abscisses est tangent à la courbe au point .
- On note la tangente à la courbe au
point , et le point d'intersection de la droite
avec l'axe des abscisses.
- Déterminer une équation de la droite et en déduire les coordonnées de .
- On appelle l'aire du domaine délimité par la courbe
, les droites d'équations , et .
peut être encadrée par l'aire du triangle et celle du trapèze .
Quel encadrement du volume de la cuve peut-on en déduire ?
-
- Montrer que, sur l'intervalle ,
la fonction définie par
est une primitive de la fonction définie par . - En déduire une primitive de la fonction sur l'intervalle .
- Déterminer la valeur exacte de l'aire et en déduire une valeur approchée du volume de la cuve au près.
- Montrer que, sur l'intervalle ,
la fonction définie par
Partie B  Pour tout réel compris entre et , on note le volume d'eau, exprimé en m, se trouvant dans la cuve lorsque la hauteur d'eau dans la cuve est égale à .
On admet que, pour tout réel de l'intervalle [2 ; 2e],
- Quel volume d'eau, au m3 près, y a-t-il dans la cuve lorsque la hauteur d'eau dans la cuve est de un mètre ?
- On rappelle que est le volume total de la cuve, est la
fonction définie en début d'exercice et la fonction définie dans
la partie B.
On considère l'algorithme ci-dessous.
Interpréter le résultat que cet algorithme permet d'afficher.
Variables: a est un réel
b est un réelTraitement: a prend la valeur 2
b prend la valeur 2e
Tant que v(b)-v(a) > 10-3 faire:
c prend la valeur (a+b)/2
Si v(c) < V/2, alors
a prend la valeur c
Sinon
b prend la valeur c
Fin Si
Fin Tant queSortie: Afficher f(c)
Voir aussi: