Dérivée seconde, TVI, …

Exercice corrigé - Spécialité maths, terminale générale

Soit la fonction définie sur par    .
  1. Soit la fonction dérivée de la fonction . Calculer pour tout réel de .
    Vérifier que la fonction dérivée seconde est définie sur par .
  2. En déduire les variations de la fonction sur .
  3. Etablir que l'équation admet une unique solution dans l'intervalle .
    Déterminer une valeur approchée de à près.
  4. En déduire les variations de sur .

Correction


Tag:Exponentielle

Autres sujets au hasard: Lancer de dés


Voir aussi:
LongPage: h2: 1 - h3: 0