Bac 2022 (11 mai): Un peu de tout dans l'espace

Exercice corrigé - Spécialité maths, terminale générale

Dans l'espace rapporté à un repère orthonormé $\left( O;\vec{i},\vec{j},\vec{k}\rp$, on considère:
  • le point A de coordonnées $(-1~;~1~;~3)$,
  • la droite $\mathcal{D}$ dont une représentation paramétrique est: $\la\begin{array}{lcl}
x&=&1+2t\\y &=& 2 - t,\\z&=& 2+2t
\enar\right.  t \in \R$.
    1. Donner les coordonnées d'un vecteur directeur $\vec{u}$ de la droite $\mathcal{D}$. On admet que le point A n'appartient pas à la droite $\mathcal{D}$.
    2. Montrer que le point $B( -1~;~3~;~0)$ appartient à la droite $\mathcal{D}$.
    3. Calculer le produit scalaire $\overrightarrow{AB} \cdot \vec{u}$.
  1. On note $\mathcal{P}$ le plan passant par le point A et orthogonal à la droite $\mathcal{D}$, et on appelle H le point d'intersection du plan $\mathcal{P}$ et de la droite $\mathcal{D}$. Ainsi, H est le projeté orthogonal de A sur la droite $\mathcal{D}$.
    1. Montrer que le plan $\mathcal{P}$ admet pour équation cartésienne: $2x - y + 2z - 3 = 0$.
    2. En déduire que le point H a pour coordonnées $\left(\dfrac79~;~\dfrac{19}{9}~;~\dfrac{16}{9}\right)$.
    3. Calculer la longueur AH. On donnera une valeur exacte.
  2. Dans cette question, on se propose de retrouver les coordonnées du point H, projeté orthogonal du point A sur la droite $\mathcal{D}$, par une autre méthode. On rappelle que le point B$( -1~;~3~;~0)$ appartient à la droite $\mathcal{D}$ et que le vecteur $\vec{u}$ est un vecteur directeur de la droite $\mathcal{D}$.
    1. Justifier qu'il existe un nombre réel $k$ tel que $\overrightarrow{HB} = k\vec{u}$.
    2. Montrer que $k = \dfrac{\overrightarrow{AB} \cdot \vec{u}}{\left\|\vec{u}\right\|^2}$.
    3. Calculer la valeur du nombre réel $k$ et retrouver les coordonnées du point H.
  3. On considère un point C appartenant au plan $\mathcal{P}$ tel que le volume du tétraèdre ABCH soit égal à $\dfrac89$. Calculer l'aire du triangle ACH.
    On rappelle que le volume d'un tétraèdre est donné par: $V = \dfrac13 \times \mathcal{B} \times h$$\mathcal{B}$ désigne l'aire d'une base et $h$ la hauteur relative à cette base.

Correction


Tag:Géométrie dans l'espace

Autres sujets au hasard: Lancer de dés


Voir aussi:
LongPage: h2: 1 - h3: 0