Bac 2014 (Nouvelle Calédonie) - Suite récurrente, construction graphique, récurrence, somme des 1er termes et algorithme

Exercice corrigé - Spécialité maths, terminale générale

On considère la fonction $f définie sur l'intervalle $[0~;~+ \infty[ par
f(x) = 5 - \dfrac{4}{x + 2}.


On admettra que $f est dérivable sur l'intervalle $[0~;~+ \infty[.
On a tracé en annexe 1 dans un repère orthonormé la courbe $\mathcal{C} représentative de $f ainsi que la droite $\mathcal{D} d'équation $y = x.


  1. Démontrer que $f est croissante sur l'intervalle $[0~;~+ \infty[.
  2. Résoudre l'équation $f(x) = x sur l'intervalle $[0~;~+ \infty[. On note $\alpha la solution.
    On donnera la valeur exacte de $\alpha puis on en donnera une valeur approchée à $10^{-2} près.
  3. On considère la suite $\left(u_n\right) définie par $u_0 = 1 et, pour tout entier naturel $n, $u_{n+1} = f\left(u_n\right).
    Sur la figure de annexe 1, en utilisant la courbe $\mathcal{C} et la droite $\mathcal{D}, placer les points $M_0, $M_1 et $M_2 d'ordonnée nulle et d'abscisses respectives $u_0, $u_1 et $u_2.
    Quelles conjectures peut-on faire sur le sens de variation et la convergence de la suite $\left( u_n\rp ?
    1. Démontrer, par récurrence, que, pour tout entier naturel $n,
      0 \leqslant u_n \leqslant u_{n+1} \leqslant \alpha

      $\alpha est le réel défini dans la question 2.
    2. Peut-on affirmer que la suite $\left( u_n\rp est convergente ? On justifiera la réponse.
  4. Pour tout entier naturel $n, on définit la suite $\left(S_n\right) par
    S_n = \sum_{k=0}^{n} u_k = u_0 + u_1 + \cdots + u_n.


    1. Calculer $S_0, $S_1 et $S_2. Donner une valeur approchée des résultats à $10^{-2} près.
    2. Compléter l'algorithme donné en annexe 2 pour qu'il affiche la somme $S_n pour la valeur de l'entier $n demandée à l'utilisateur.
    3. Montrer que la suite $\left( S_n\rp diverge vers $+ \infty.

Annexe 1 à rendre avec la copie




\psset{unit=1.35cm}
\begin{pspicture}(-0.5,-0.25)(8.1,7.2)
\psaxes[linewidth=1.25pt]{->}(0,0)(-0.5,-0.25)(8.1,7.2)
\psline[linecolor=cyan](7.2,7.2)
\psplot[plotpoints=4000,linewidth=1.25pt,linecolor=blue]{0}{8.1}{5 4 x 2 add div sub}
\uput[dl](0,0){O}
\end{pspicture}


Annexe 2 à rendre avec la copie




\renewcommand\arraystretch{2}
\begin{tabular}{|l l|}\hline
\textbf{Entr\'ee:}&$n$ un entier naturel \\
\textbf{Variables:}&$u$ et $s$ sont des variables r\'eelles\\ 
&$n$ et $i$ sont des variables enti\`eres\\
\textbf{Initialisation:}& $u$ prend la valeur 1 \\
&$s$ prend la valeur $u$ \\
&$i$ prend la valeur 0\\ 
&Demander la valeur de $n$ \\
\textbf{Traitement:}&Tant que \ldots\\ 
&Affecter \`a $i$ la valeur $i + 1$\\
&Affecter \`a $u$ la valeur \ldots\\
&Affecter \`a $s$ la valeur \ldots\\
&Fin Tant que \\
\textbf{Sortie:}&Afficher $s$.\\ \hline
\end{tabular}


Correction


Tag:Suites

Autres sujets au hasard: Lancer de dés


Voir aussi:
LongPage: h2: 1 - h3: 0