Bac 2010 (Centres étrangers) - Suite et fonction
Exercice corrigé - Spécialité maths, terminale générale
Centres étrangers, juin 2010
Soit
la fonction définie sur l'intervalle
par
.
Le but de cet exercice est d'étudier des suites
définies par
un premier terme positif ou nul
et vérifiant pour tout entier
naturel
,
.
Correction
Soit



Le but de cet exercice est d'étudier des suites




- Etude de propriétés de la fonction
- Etudier le sens de variation de la fonction
sur
.
- Résoudre dans l'intervalle
l'équation
. On note
la solution.
- Montrer que si
appartient à l'intervalle
, alors
appartient à l'intervalle
.
- Etudier le sens de variation de la fonction
- Etude de la suite
pour
Dans cette question, on considère la suitedéfinie par
et pour tout entier naturel
,
.
- Représenter graphiquement la courbe représentative de la
fonction
, et placer le points
de coordonnées
et construire les points
,
,
et
d'ordonnée nulle et d'abscisses respectives
,
,
et
.
Quelles conjectures peut-on émettre quant au sens de variation et à la convergence de la suite?
- Démontrer par récurrence que, pour tout entier naturel
:
.
Quel est alors le sens de variation de la suite?
- Représenter graphiquement la courbe représentative de la
fonction
Correction
Tag:Suites
Voir aussi:
Quelques devoirs
sur les fonctions: calcus de dérivées et sens de variation, et les suites: démonstration par récurrence, construction géométrique des premiers termes d'une suite récurrente, suite auxiliaire géométrique
sur les fonctions: calcus de dérivées et sens de variation, et les suites: démonstration par récurrence, construction géométrique des premiers termes d'une suite récurrente, suite auxiliaire géométrique
sur les fonctions: calcus de dérivées et sens de variation, et les suites: démonstration par récurrence, construction géométrique des premiers termes d'une suite récurrente, convergence monotone et point fixe
sur les fonctions: calcus de dérivées et sens de variation, et les suites: démonstration par récurrence, construction géométrique des premiers termes d'une suite récurrente, convergence monotone et point fixe
maison sur les fonctions: calcus de dérivées et sens de variation, et les suites: démonstration par récurrence, suite auxiliaire arithmétique, convergence monotone et point fixe