Bac 2022 (12 mai): QCM, fonctions, convexité, suites
Exercice corrigé - Spécialité maths, terminale générale
Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse fausse, une réponse multiple ou l'absence de réponse à une question ne rapporte ni n'enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie.
Aucune justification n'est demandée.
Pour les questions 1 à 3 ci-dessous, on considère une fonction
définie et deux fois dérivable sur
. La courbe de sa fonction dérivée
est donnée ci-dessous.
On admet que
admet un maximum en
et que sa courbe coupe l'axe des abscisses au point de coordonnées
.
Question 1 :
a. La fonction
admet un maximum en
b. La fonction
admet un maximum en
c. La fonction
admet un minimum en
d. Au point d'abscisse
, la courbe de la fonction
admet une tangente horizontale.
![\[\psset{unit=1.2cm}
\begin{pspicture*}(-5.2,-2.6)(1,1)
\psgrid[gridlabels=0pt,subgriddiv=4,gridwidth=0.25pt,subgridwidth=0.15pt]
\psaxes[linewidth=1.25pt,labelFontSize=\scriptstyle]{->}(0,0)(-5.2,-2.6)(1,1)
%\pscurve[linecolor=blue,linewidth=1.25pt](-5.2,0.05)(-4,0.13)(-3,0.28)(-2,0.4)(-1,0.35)(0,-1)(0.38,-2.6)
\psplot[plotpoints=2000,linewidth=1.25pt,linecolor=red]{-5}{3}{2 x mul 1 add 2.71828 x exp mul neg}
\end{pspicture*}\]](/Generateur-Devoirs/TS/ChapFonctions/ex12052022/17.png)
Question 2 :
a. La fonction
est convexe sur
b. La fonction
est convexe sur
c. La courbe
représentant la fonction
n'admet pas de point d'inflexion
d. la fonction
est concave sur
Question 3:
La dérivée seconde
de la fonction
vérifie :
a.
pour
b.
pour
c.
d.
Question 4 :
On considère trois suites
,
et
. On sait que, pour tout entier naturel
, on a :
et de plus:
et
.
On peut alors affirmer que :
a. la suite
converge
b. Si la suite
est croissante alors la suite
est minorée par
c.
d. la suite
diverge.
Question 5:
On considère une suite
telle que, pour tout entier naturel
non nul:
.
On peut alors affirmer que :
a. la suite
diverge
b. la suite
converge
c.
d.
.
Question 6:
On considère
une suite réelle telle que pour tout entier naturel
, on a :
.
On peut affirmer que:
a. Il existe un entier naturel
tel que
est un entier
b. la suite
est croissante
c. la suite
est convergente
d. La suite
n'a pas de limite.
Correction
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie.
Aucune justification n'est demandée.
Pour les questions 1 à 3 ci-dessous, on considère une fonction



On admet que



Question 1 :
a. La fonction


b. La fonction


c. La fonction


d. Au point d'abscisse


On rappelle que la courbe ci-dessous représente la fonction dérivée
de
.


![\[\psset{unit=1.2cm}
\begin{pspicture*}(-5.2,-2.6)(1,1)
\psgrid[gridlabels=0pt,subgriddiv=4,gridwidth=0.25pt,subgridwidth=0.15pt]
\psaxes[linewidth=1.25pt,labelFontSize=\scriptstyle]{->}(0,0)(-5.2,-2.6)(1,1)
%\pscurve[linecolor=blue,linewidth=1.25pt](-5.2,0.05)(-4,0.13)(-3,0.28)(-2,0.4)(-1,0.35)(0,-1)(0.38,-2.6)
\psplot[plotpoints=2000,linewidth=1.25pt,linecolor=red]{-5}{3}{2 x mul 1 add 2.71828 x exp mul neg}
\end{pspicture*}\]](/Generateur-Devoirs/TS/ChapFonctions/ex12052022/17.png)
Question 2 :
a. La fonction

![$\left]- \infty~;~- \dfrac32\right[$](/Generateur-Devoirs/TS/ChapFonctions/ex12052022/19.png)
b. La fonction

![$\left]- \infty;~- \dfrac12\right[$](/Generateur-Devoirs/TS/ChapFonctions/ex12052022/21.png)
c. La courbe


d. la fonction

![$\left] - \infty~;~- \dfrac12\right[$](/Generateur-Devoirs/TS/ChapFonctions/ex12052022/25.png)
Question 3:
La dérivée seconde


a.

![$x \in \left]-\infty~;~- \dfrac12\right[$](/Generateur-Devoirs/TS/ChapFonctions/ex12052022/29.png)
b.

![$x \in [- 2~;~- 1]$](/Generateur-Devoirs/TS/ChapFonctions/ex12052022/31.png)
c.

d.

Question 4 :
On considère trois suites







On peut alors affirmer que :
a. la suite

b. Si la suite



c.

d. la suite

Question 5:
On considère une suite



On peut alors affirmer que :
a. la suite

b. la suite



Question 6:
On considère



On peut affirmer que:
a. Il existe un entier naturel


b. la suite

c. la suite

d. La suite

Correction
Tags:QCMFonctionsSuites
Voir aussi: