Bac 2008 (Nouvelle Calédonie) - Arbre, arbre à inverser, loi binomiale
Exercice corrigé - Spécialité maths, terminale générale
Deux éleveurs produisent une race de poissons d'ornement qui ne prennent leur couleur définitive qu'à l'âge de trois mois :
Une animalerie achète les alevins, à l'âge de deux mois : 60 % au premier éleveur, 40 % au second.
- pour les alevins du premier élevage, entre l'âge de deux mois et l'âge de trois mois, 10 % n'ont pas survécu, 75 % deviennent rouges et les 15 % restant deviennent gris.
- pour les alevins du deuxième élevage, entre l'âge de deux mois et l'âge de trois mois, 5 % n'ont pas survécu, 65 % deviennent rouges et les 30 % restant deviennent gris.
- Un enfant achète un poisson le lendemain de son arrivée à l'animalerie, c'est-à-dire à l'âge de deux mois.
- Montrer que la probabilité que le poisson soit toujours vivant un mois plus tard est de
.
- Déterminer la probabilité qu'un mois plus tard le poisson soit rouge.
- Sachant que le poisson est gris à l'âge de trois mois, quelle est la probabilité qu'il provienne du premier élevage ?
- Montrer que la probabilité que le poisson soit toujours vivant un mois plus tard est de
- Une personne choisit au hasard et de façon indépendante
alevins de deux mois. Quelle est la probabilité qu'un mois plus tard, seulement trois soient en vie ? On donnera une valeur approchée à
près.
- L'animalerie décide de garder les alevins jusqu'à l'âge de trois mois, afin qu'ils soient vendus avec leur couleur définitive. Elle gagne
euro si le poisson est rouge,
euro s'il est gris et perd
euro s'il ne survit pas.
la variable aléatoire égale au gain algébrique de l'animalerie par poisson acheté. Déterminer la loi de probabilité de
et son espérance mathématique, arrondie au centime.
Correction
Nouvelle Calédonie, mars 2008
On note les événement
: "le poisson provient du premier élevage",
: "le poisson n'a pas survécu",
: "le poisson est devenu rouge"
et
: "le poisson est devenu gris.
On peut alors construire l'arbre pondéré suivant:
Cacher la correction
Nouvelle Calédonie, mars 2008
On note les événement




On peut alors construire l'arbre pondéré suivant:

-
- La probabilité que l'alevin acheté par l'enfant soit vivant
au bout de trois mois est d'après l'arbre (ou la formule des probabilités totales):
- De même la probabilité pour l'enfant d'avoir un poisson rouge est:
- La probabilité que le poisson provienne du premier élevage sachant qu'il est gris est:
- La probabilité que l'alevin acheté par l'enfant soit vivant
au bout de trois mois est d'après l'arbre (ou la formule des probabilités totales):
- On répète
fois l'expérience "choisir au hasard un alevin", dont le succès est "l'alevin est toujours en vie au bout d'un mois" et de probabilité
. Ces expériences sont supposées identiques et indépendantes entre elles.
Ainsi, la variable aléatoireégale au nombre de succès, c'est-à-dire d'alevins en vie au bout d'un mois sur ces 5 pris au hasard, suit la loi binomiale de paramètres
et
.
- On a le tableau de loi de probabilité suivant :
On a donc Eeuro.
Cacher la correction
Tag:Probabilités
Voir aussi:
Quelques devoirs
Bac blanc: QCM: fonctions, convexité, suite et programme Python - Probabilités: test pour détecter une maladie - Suites: un peu sur les suites - Géométrie dans l'espace - Fonction logarithme
probabilités, loi binomiale et suites de probabilités - suites numériques
Fonction exponentielle - Géométrie dans l'espace - Probabilités, loi binomiale et arbre pondéré - Suite récurrente et python
Bac 2013, Amérique du Sud - Bac 2011, Amérique du nord
sur les probabilités: indépendance d'événements, arbre et probabilités conditionnelles, et le logarithme népérien (ln)