Exercice corrigé - Etude d'une fonction à l'aide d'une fonction auxiliaire
Etude à l'aide d'une fonction auxiliaire
Première générale et scientifique
Exercice corrigé de mathématiques: Exercice corrigé - Etudes de fonctions, à l'aide d'une fonction auxiliaire et du théorème des valeurs intermédiaires
Exercice - énoncé:
On considère la fonction
définie sur
par
l'expression
.
On note
sa courbe représentative dans un repère
.
Cacher la correction



On note


- Etude d'une fonction auxiliaire.
On pose.
- Etudier le sens de variation de
.
- Montrer que l'équation
admet une unique solution, que l'on notera
, dans l'intervalle
.
- Donner un encadrement de
à 0,1 près.
- En déduire le signe de
selon les valeurs de
.
- Etudier le sens de variation de
- Etude des variations de
.
Calculer, et montrer que
. En déduire le tableau de variation de
.
- Tangente.
Déterminer l'équation de la tangenteà
au point d'abscisse 2.
Correction exercice
- A.
- Etude d'une fonction auxiliaire.
On pose
.
- Pour tout
réel,
.
- La fonction
est dérivable, strictement croissante sur l'intervalle
, avec
et
.
D'après le théorème des valeurs intermédiaires, il existe donc une unique solution
à l'équation
sur l'intervalle
.
De plus, sur, on a
et sur
, on a
. Ainsi, il ne peut pas y avoir d'autre solution sur
à l'équation
.
- On a de plus,
et
, d'où on en déduit l'encadrement
.
- On en déduit le tableau de signe de
:
- Pour tout
- B.
- Etude des variations de
. Pour tout
,
- C.
- Tangente.
La tangente
à
au point d'abscisse
a pour équation:
avec
, et
, soit
Cacher la correction
Voir aussi: