%% Intersection de deux spheres clear all;clf n=40; theta=(-n:2:n)/n*pi; phi=(-n:2:n)'/n*pi/2; cosphi=cos(phi);cosphi(1)=0;cosphi(n+1)=0; sintheta=sin(theta);sintheta(1)=0;sintheta(n+1)=0; x=cosphi*cos(theta); y=cosphi*sintheta; z=sin(phi)*ones(1,n+1); RSat=0.05; figure(1);clf;whitebg('w');hold on view(3); C1=[-0.5 0 1.5];R1=0.8; Sat1=surf(RSat*x+C1(1),RSat*y+C1(2),RSat*z+C1(3),10*ones(size(z))); S1=surf(R1*x+C1(1),R1*y+C1(2),R1*z+C1(3),8*ones(size(z))); C2=[0.5 0 1.5];R2=0.9; Sat2=surf(RSat*x+C2(1),RSat*y+C2(2),RSat*z+C2(3),10*ones(size(z))); S2=surf(R2*x+C2(1),R2*y+C2(2),R2*z+C2(3),8*ones(size(z))); shading interp alpha(0.2) alpha(Sat1,1) alpha(Sat2,1) camlight; lighting gouraud; axis square equal tht=0:0.01:2*pi; xI=(R2*C1(1)+R1*C2(1))/(R1+R2);xI=-0.1; yI=(R2*C1(2)+R1*C2(2))/(R1+R2);%yI=0; zI=(R2*C1(3)+R1*C2(3))/(R1+R2);%zI=1.5; D1=(xI-C1(1))^2+(yI-C1(2))^2+(zI-C1(3))^2; D1=sqrt(D1); D2=(xI-C2(1))^2+(yI-C2(2))^2+(zI-C2(3))^2; D2=sqrt(D2); R=R1^2-D1^2;R=sqrt(R); %R=R2^2-D2^2;R=sqrt(R) plot3(xI,yI,zI,'.r') pI=plot3(xI+zeros(size(tht)),yI+R*cos(tht),zI+R*sin(tht),'-r'); set(pI,'linewidth',2.5) vw=[0.9681 0.2504 0.0000 -0.6093 -0.1973 0.7629 0.6157 -0.5906 -0.1541 0.5961 -0.7880 8.8333 0 0 0 1.0000]; view(vw); axis off