Devoir de mathématiques

Exercice 1 Résoudre les inéquations : $I_1: e^{-3x} - 1 \ge 0$ $I_2: \frac{e^{5x+2}}{e^{2(x+1)}} - e^{-x+1} \ge 0$

Exercice 2 Étudier le sens de variation de la fonction f définie par $f(x) = 2xe^{3x^2}$. Préciser l'équation de la tangente au point d'abscisse 0.

Exercice 3 Soit f la fonction définie par $f(x) = \frac{2}{x} + 1$ sur $]0; +\infty[$.

On définit la suite (u_n) par $u_0 = \frac{1}{2}$ et, pour tout entier n, par $u_{n+1} = f(u_n)$.

- a) Calculer u_1 .
- b) Déterminer le sens de variation de f puis tracer l'allure de la courbe représentative de f dans un repère.
- c) Construire sur ce graphique les points A_0 , A_1 , A_2 , A_3 et A_4 d'ordonnées nulles et d'absisses u_0 , u_1, \ldots, u_4 .
- d) Quelle conjecture peut-on faire quant-à la valeur limite de cette suite? Calculer la valeur exacte de cette limite éventuelle.

Exercice 4 On considère la suite (u_n) définie par $u_n = \frac{2n-1}{n+1}$.

- a) Calculer les premiers termes u_0 , u_1 et u_2 .
- b) Déterminer, pour tout entier n, le signe de $u_{n+1} u_n$. Donner alors le sens de variation de (u_n) .

Devoir de mathématiques

Exercice 1 Résoudre les inéquations : $I_1: e^{-3x} - 1 \geqslant 0$ $I_2: \frac{e^{5x+2}}{e^{2(x+1)}} - e^{-x+1} \geqslant 0$

Exercice 2 Étudier le sens de variation de la fonction f définie par $f(x) = 2xe^{3x^2}$. Préciser l'équation de la tangente au point d'abscisse 0.

Exercice 3 Soit f la fonction définie par $f(x) = \frac{2}{x} + 1$ sur $]0; +\infty[$.

On définit la suite (u_n) par $u_0 = \frac{1}{2}$ et, pour tout entier n, par $u_{n+1} = f(u_n)$.

- a) Calculer u_1 .
- b) Déterminer le sens de variation de f puis tracer l'allure de la courbe représentative de f dans un repère.
- c) Construire sur ce graphique les points A_0 , A_1 , A_2 , A_3 et A_4 d'ordonnées nulles et d'absisses u_0 , u_1 ,..., u_4 .
- d) Quelle conjecture peut-on faire quant-à la valeur limite de cette suite? Calculer la valeur exacte de cette limite éventuelle.

Exercice 4 On considère la suite (u_n) définie par $u_n = \frac{2n-1}{n+1}$.

- a) Calculer les premiers termes u_0 , u_1 et u_2 .
- b) Déterminer, pour tout entier n, le signe de $u_{n+1} u_n$. Donner alors le sens de variation de (u_n) .