Correction du devoir de mathématiques

Exercice 1 On considère la fonction f définie sur \mathbb{R} par l'expression $f(x) = xe^{0,2x-1}$. On définit à partir de cette fonction la suite (u_n) définie par $u_0 = 3$ et, pour tout entier n, $u_{n+1} = f(u_n)$.

a) On a f = uv avec u(x) = x donc u'(x) = 1 et $v(x) = e^{0.2x-1}$ soit $v = e^w$ avec w(x) = 0.2x - 1 donc w'(x) = 0.2 et alors $v' = w'e^w$ soit $w'(x) = 0.2e^{0.2x-1}$.

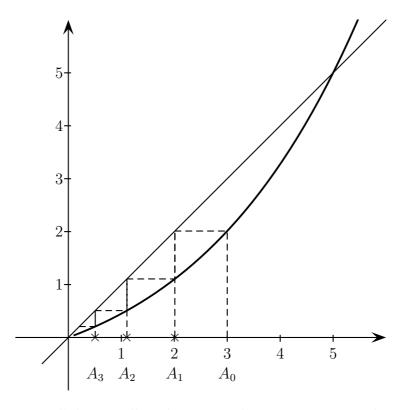
On a alors
$$f' = u'v + uv'$$
, soit

$$f'(x) = e^{0.2x-1} + x \times 0, 2e^{0.2x-1} = (1+0,2x)e^{0.2x-1}$$

On a $e^{0,2x-1} > 0$ et donc

x	$-\infty$		-5		$+\infty$
$e^{0,2x-1}$		+		+	
1 + 0, 2x		_	Ф	+	
f'(x)		_	Ф	+	
g		\searrow	$-5e^{-2}$	7	

On trace alors l'allure de la courbe et sur le graphique la droite d'équation y = x et on construit les points demandés sur l'axe des abscisses.



b) La suite semble tendre vers 0, l'abscisse d'un des points d'intersection entre la courbe de f et la droite d'équation y = x.

L'abscisse de ce point vérifie dont l'équation

$$f(x) = x \iff xe^{0.2x-1} = x \iff x(e^{0.2x-1} - 1) = 0$$

qui est un produit nul, donc soit x = 0, soit

$$e^{0,2x-1} = 0 \iff e^{0,2x-1} = 1 = e^0$$

soit encore $0, 2x - 1 = 0 \iff x = 5$.

Comme la suite semble décroissante, la limite ne pourrait être que la première solution 0.

Exercice 2

On considère la suite numérique (u_n) définie par $u_0 = 1$ et, pour tout entier naturel n, par $u_{n+1} = \frac{5u_n}{2u_n + 5}$. On définit aussi la suite (v_n) pour tout n entier naturel par $v_n = \frac{1}{u_n}$.

1.
$$v_0 = \frac{1}{u_0} = \frac{1}{1} = 1$$
.
 $v_1 = \frac{1}{u_1}$, avec $u_1 = \frac{5u_0}{2u_0 + 5} = \frac{5}{7}$
 $v_2 = \frac{1}{u_2}$, avec $u_2 = \frac{5u_1}{2u_1 + 5} = \frac{5 \times \frac{5}{7}}{2 \times \frac{5}{7} + 5} = \frac{5}{9}$ et donc $v_2 = \frac{1}{\frac{5}{9}} = \frac{9}{5}$

2.

$$v_{n+1} - v_n = \frac{1}{u_{n+1}} - \frac{1}{u_n}$$

$$= \frac{1}{\frac{5u_n}{2u_n + 5}} - \frac{1}{u_n}$$

$$= \frac{2u_n + 5}{5u_n} - \frac{1}{u_n}$$

$$= \frac{2u_n + 5}{5u_n} - \frac{5}{5u_n}$$

$$= \frac{2u_n}{5u_n} = \frac{2}{5}$$

ainsi la suite (v_n) est arithmétique de raison $r = \frac{2}{5}$.

3. On en déduit que, pour tout entier n, $v_n = v_0 + nr = 1 + \frac{2}{5}n$.

Ensuite, comme $v_n = \frac{1}{u_n} \iff u_n = \frac{1}{v_n}$, on trouve finalement l'expression

$$u_n = \frac{1}{1 + \frac{2}{5}n}$$