Fonction exponentielle -Exercices

Première générale spécialité maths

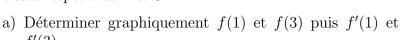
Exercice 1 1. Soit n un nombre entier relatif. Simplifier les écritures suivantes :

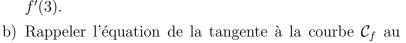
a) $2^{-3} = \dots$ b) $5^{-3} \times 5^{5}$ c) $3^{2} \times \frac{3^{8}}{3^{3}}$ d) $(10^{6})^{2} \times (10^{-3})^{5}$ e) $2^{2n} \times 2$ f) $2^{3n+1} \times 2^{-n+1}$ g) $\frac{2^{3n+1}}{2^{2n+1}}$ h) $(2^{n+1})^{3} \times 2^{-1}$ i) $\frac{4^{n+2}}{2^{2n}} \times \frac{1}{8}$ j) $\frac{2^{n+3}}{4^{-n}} \times 2^{-n}$ k) $3^{2n} (3^{-2n} + 3^{-n})$

point d'abscisse a.

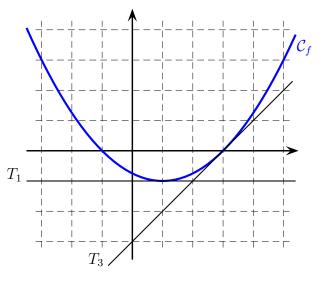
2. Factoriser: $A = 2^5 - 2^3$ $B = 2^{n+2} + 2^n$ $C = 2^{n+3} + 2^{n+2} + 2^{n+1} + 2^n$ $D = 2^{2n} - 2^{n+1}$

Exercice 2 C_f est la courbe représentative d'une fonction f. T_1 et T_3 sont les tangentes à C_f aux points d'abscisses respectives 1 et 3.





Donner les équations de T_1 et T_3 .



Exercice 3 Soit f une fonction définie et dérivable sur \mathbb{R} , croissante et telle que f(-1) = 0, f(0)=1, f'(0)=1, f(2)=3, f'(2)=3. Tracer une courbe \mathcal{C}_f vérifiant ces données.

Exercice 4 Étudier les variations des fonctions suivantes, et tracer l'allure de leur courbe représentative :

a) $f(x) = x^3 - 4x + 1$ b) $f(x) = \frac{x+1}{x+2}$ c) $f(x) = 2x + \frac{3}{2x-1}$

Exercice 5 Déterminer les équations des tangentes à la courbe représentative de la fonction exponentielle aux points d'abscisse 0; 1 et 2.

Exercice 6 1. Simplifier les expressions : a) $e^5 \times e^3 \times e^{-4}$ b) $\frac{e^7}{e^{-2}} \times \frac{e^3}{e^{10}}$ c) $(e^x)^5 e^{-2x}$

d) $\frac{e^{2x+3}}{e^{2x-1}}$ e) $\frac{e^x + e^{-x}}{e^{-x}}$ f) $(e^{x+1})^3 \times e^{-1}$ g) $\frac{e^{x+3}}{e^{-x}} \times e^{-x}$ h) $e^{2x} (e^{-2x} + e^{-x})$

2. Développer : $A = (e^2 + e^6)(e^{-1} + e)$ $B = (1 + e^x)^2$ $C = (3 - e^x)(3 + e^x)$

3. Factoriser: $A = e^5 - e^3$ $B = e^{x+2} + e^x$ $C = e^{x+3} + e^{x+2} + e^{x+1} + e^x$ $D = e^{2x} - e^{x+1}$ $E = 4 - e^{2x} - e^{x+1}$

Exercice 7 Démontrer que pour tout réel x, a) $\frac{e^{2x}-1}{e^x+1} = e^x \frac{1-e^{-2x}}{1+e^{-x}}$

b) $(e^x + e^{-x})^2 - (e^x - e^{-x})^2 = 4$ c) $\frac{e^x - 1}{e^x + 1} = \frac{1 - e^{-x}}{1 + e^{-x}}$ d) $e^{-x} - e^{-2x} = \frac{e^x - 1}{e^{2x}}$

Exercice 8 Résoudre les équations et inéquations :

• $(E_1): e^x = 1$ • $(E_2): e^{2x} = e$ • $(E_3): e^x = e^{-x}$ • $(E_4): e^{x^2} = (e^{-x})^2 e^3$ • $(E_5): e^{2x+1} = e^{\frac{6}{x}}$

• $(I_1): e^x > e$ • $(I_2): e^{2x} \le 1$ • $(I_3): (e^x)^3 \le \frac{1}{e}$ • $(I_4): e^x - \frac{1}{e^x} > 0$ • $(I_5): e^{x^2} \ge e^{-x-1}$

Exercice 9 Donner le tableau de signe de : a) $f(x) = e^x - 1$ b) $f(x) = (x^2 + x - 6)e^{-3x}$

c) $f(x) = 2xe^x + 3e^x$ d) $f(x) = e^x + e^{-2x}$ e) $f(x) = e^x - e^{-2x}$ f) $f(x) = \frac{x+2}{e^x - 1}$

Exercice 10 Calculer la dérivée f' des fonctions suivantes : a) $f(x) = e^{3x+1}$ b) $f(x) = e^{x^2+x}$

c) $f(x) = 3e^{2x}$ d) $f(x) = xe^x$ e) $f(x) = x^2e^{x^2}$ f) $f(x) = \frac{x}{e^x}$ g) $f(x) = \frac{e^{2x}}{x+1}$

Exercice 11 Étudier le sens de variation des fonctions : a) $f(x) = e^{3x}$ b) $f(x) = e^{x^2}$ c) $f(x) = xe^{2x}$

$$d)f(x) = \frac{e^x}{x} \quad e)f(x) = e^x - x \quad f)f(x) = e^{x^2} - x^2 \quad g)f(x) = \frac{e^x + e^{-x}}{2} \quad h)f(x) = (2x + 3)e^{-2x}$$

Exercice 12 Soit f la fonction définie sur \mathbb{R} par $f(x) = e^{-x^2+1}$, et \mathcal{C}_f sa courbe représentative.

- a) Déterminer les équations des trois tangentes à C_f aux points d'abscisses -1, 0 et 1. Tracer ces trois tangentes dans un repère.
- b) Étudier les variations de f et compléter le graphique précédent avec la courbe de f.

Exercice 13 Etudier sur IR les fonctions suivantes, et tracer l'allure de la courbe représentative :

a) $f(x) = e^{-x}$ b) $g(x) = e^x + e^{-x}$ c) $h(x) = x + e^x$ d) $k(x) = e^{3x} - 3e^x$ e) $l(x) = e^{-x^2}$

Exercice 14 f et g sont les fonctions définies sur \mathbb{R} par : $f(x) = -x^2 e^x$ et $g(x) = (x^2 - x - 1) e^x$.

- 1. Déterminer les coordonnées des points d'intersection des courbes C_f et C_g représentatives des fonctions f et g.
- 2. Déterminer la position relative de C_f et C_q .
- 3. Dresser les tableaux de variations de f et g.

Exercice 15 On considère la fonction f définie sur \mathbb{R} par $f(x) = e^x - \frac{x^2}{2}$.

- a) Calculer la dérivée f' de f puis la dérivée seconde f'' = (f')'.
- b) Donner les variations de f'.
- c) En déduire les variations de f.
- d) Montrer que, pour tout réel x > 0, on a $\frac{e^x}{x} > \frac{x}{2}$.

Exercice 16 Un capteur solaire récupère de la chaleur par le biais d'un fluide. On s'inétéresse à l'évolution de la température du fluide dans un capeteur de 1m de longueur.

Cette température est modélisée par : $T(x) = 170 - 150e^{-0.6x}$, où $x \in [0; 1]$ est la distance, en mètres, parcourue par le fluide depuis son entré dans le capteur, et T(x) est la température en °C.

- 1. Déterminer la température à l'entrée du capteur.
- 2. a) Etudier les variations de la température T sur [0;1].
 - b) En déduire la température maximale, au degré près, atteinte par le fluide.
 - c) Tracer dans un repère la courbe représentant la température T.

Exercice 17 f est la fonction définie sur \mathbb{R} par $f(x) = (2x+1)e^{-2x}$.

 \mathcal{C} est sa courbe représentative dans un repère orthonormal $(O; \vec{i}, \vec{j})$ (unité graphique 2 cm).

- 1. Dresser le tableau de variation de f.
- 2. a) Déterminer les coordonnées du point A d'intersection de C avec l'axe des abscisses.
 - b) Etudier le signe de f(x) suivant les valeurs de x.

Exercice 18 $(d'après\ Bac\ S)\ g_1$ et g_2 sont les fonctions définies sur ${\rm I\!R}$ par :

$$g_1(x) = xe^{-x}$$
 et, $g_2(x) = x^2e^{-x}$

- 1. Étudier le sens de variation de g_1 et g_2 .
- 2. Dans un repère orthonormal du plan, on note C_1 et C_2 les courbes représentatives de g_1 et g_2 .
 - a) Préciser la position relative des deux courbes.
 - b) Tracer les deux courbes.
- 3. a) Donner une équation de la tangente à la courbe C_1 au point d'abscisse a (a réel).
 - b) Cette tangente coupe l'axe des ordonnées en un point N. Déterminer en fonction de a, l'ordonnée de N.

S<u>ynthèse</u>

exp est la seule fonction telle que f' = f et f(0) = 1.

 $\exp' = \exp$ et donc, pour toute fonction u dérivable, $(e^u)' = u'e^u$.

Pour tout $x \in \mathbb{R}$, $e^x > 0$; $e^0 = 1$; $e^1 = e \simeq 2,718$

La fonction exponentielle est dérivable sur ${\rm I\!R},$ strictement croissante.

En particulier, $e^x = e^y \iff x = y$ et $e^x < e^y \iff x < y$

Pour tous réels x et y, $1 \qquad e^x$

 $e^{x+y} = e^x e^y$; $e^{-x} = \frac{1}{e^x}$; $e^{x-y} = \frac{e^x}{e^y}$; $(e^x)^y = e^{xy}$

