Dérivation des fonctions - Exercices

I - Échauffements - Rappels

Exercice 1

- a) Rappeler la définition de la courbe représentative de la fonction f. Illustrer graphiquement.
- b) Soit f la fonction définie par l'expression $f(x) = 2x^2 x 3$.
 - a) Indiquer les points qui appartiennent à C_f : A(2;5), B(-2;-13), C(5;42) et D(-5;52)
 - b) Calculer les coordonnées des points d'intersection de C_f avec l'axe des ordonnées, puis avec l'axe des abscisses.

Exercice 2

- a) Tracer dans un repère les droites d'équations y = 2x 1 et y = -x + 2. Calculer les coordonnées de leur point d'intersection.
- b) Une droite passe par les points A(2;1) et B(4;3). Tracer cette droite et lire graphiquement son coefficient directeur.
 - Déterminer ce coefficient directeur par le calcul.
- c) Reprendre la question précédente avec la droite qui passe par les points C(-1;2) et D(3;-1).
- d) Déterminer l'équation réduite de la droite qui passe par les points E(0;12) et F(3;3). Quelles sont les coordonnées de son point d'intersection avec l'axe des abscisses?
- e) La droite d qui passe par G(2;3) et H(12;11) et la droite d' qui passe par I(-2;-5) et J(3;-1) sont-elles parallèles?

Exercice 3 Sortie de route

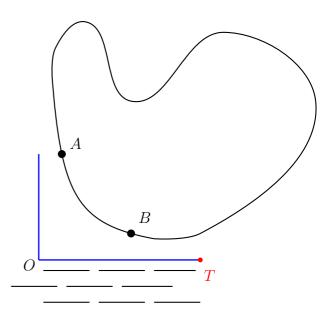
La courbe suivnate est celle d'un circuit automobile sur lequel les véhicules circulent dans le sens horaire inverse (ou sens trigonométrique). Au sud du circuit se trouve une tribune pour les spectateurs. Lorsqu'un pilote perd le contrôle de son véhicule, sa trajectoire devient alors rectiligne (et uniforme, cf. physique...).

- a) Un pilote perd le contrôle en A. Dessiner sa trajectoire ensuite.
- b) Le point extrême de la tribune est le point T. Un autre pilote perd le contrôle en B. Dessiner sa trajectoire : percute-t-il la tribune?
- c) Entre A et B la courbe du circuit est la courbe de la fonction $f(x) = \frac{1}{x}$. Le point B a pour abscisse 2 tandis T a pour abscisse 3, 5, (OT) étant l'axe des abscisses. La tribune sera-t-elle épargnée par le véhicule qui a perdu le contrôle en B.

Nous répondrons à cette question, exactement, plus tard...

Pour l'instant, on note C le point sur le circuit entre A et B et d'abscisse 1.

La droite (CB) passe-t-elle par la tribune au sud?

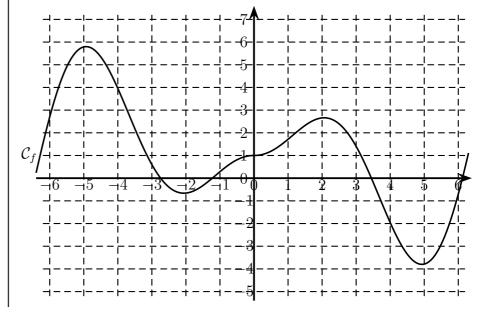


Exercice 4 On considère le demicercle \mathcal{C} de rayon 1.

Tracer les tangentes à \mathcal{C} aux points d'abscisse -0, 5, 0, 0, 5 et 1.

Exercice 5 La courbe C_f , représentative d'une fonction f, est donnée ci-dessous. Construire les tangentes à cette courbe aux points d'abscisses -5; -4; 0; 2, 4 et 5.





\mathbf{II} Nombre dérivé en a d'une fonction

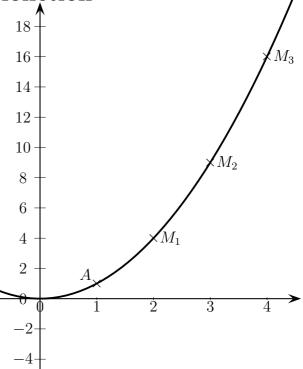
Exercice 6 Soit f la fonction carré et C_f sa courbe représentative dans un repère orthogonal. On note A, M_1 , M_2 et M_3 les points de C_f d'abscisses respectives 1, 2, 3 et 4.

- 1. Tracer sur une figure C_f et placer les points $A, M_1, M_2, M_3.$
- 2. Calculer les coefficients directeurs des droites $(AM_3), (AM_2) \text{ et } (AM_1).$
- 3. Soit un nombre réel h > 0, et M le point de C_f d'abscisse 1+h.

Donner une expression du coefficient directeur m_h de la droite (AM).

4. Compléter le tableau :

h	1	0, 5	0, 1	0,01	0,001	0,0001
m_h						



5. Que se passe-t-il lorsque h se rapproche de 0?

Exercice 7 Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{1}{2}x^2 - 3$.

- 1. Tracer dans un repère orthogonal C_f et sa tangente au point d'abscisse a=1. Déterminer alors graphiquement f'(1).
- 2. a) Pour h>0, on pose $\tau(h)=\frac{f(a+h)-f(a)}{h}.$ Compléter le tableau :

h	1	0,5	0, 1	0,01	0,001	0,0001
$\tau(h)$)					

Vers quoi semble tendre le nombre $\tau(h)$ lorsque le nombre h tend vers 0?

b) Démontrer ce résultat algébriquement à partir de l'expression de $\tau(h)$ et de celle de f.

Exercice 8 Dans chaque cas, montrer que f est dérivable au point a indiqué, et donner f'(a).

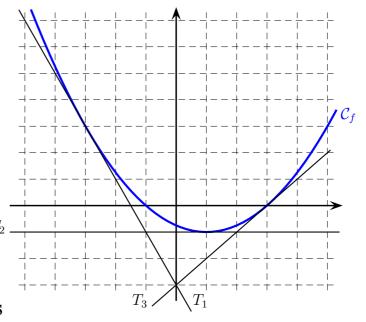
- $f_1(x) = \frac{1}{x}$ en a = 1 $f(x) = \frac{1}{1-x}$ en a = 2 $f(x) = x^2 2x$ en a = 2

- $\bullet f(x) = x^2 2x \text{ en } a \in \mathbb{R}$ $\bullet f(x) = x^3 3x \text{ en } a = 2$ $\bullet f(x) = x^3 3x \text{ en } a \in \mathbb{R}$

Exercice \mathcal{C}_f est la courbe 9 représentative d'une fonction f.

 T_1 , T_2 et T_3 sont les tangentes à \mathcal{C}_f aux points d'abscisses respectives -3, 1 et 3.

Déterminer graphiquement f'(-3), f'(1) et f'(3), puis les équations de T_1 , T_2 et T_3 .



Fonctions dérivées

Exercice 10 Déterminer la fonction dérivée f' de la fonction f dans chacun des cas :

a)
$$f(x) = 3$$

b)
$$f(x) = 3x$$

b)
$$f(x) = 3x$$
 c) $f(x) = \frac{5}{2}x$ d) $f(x) = x^2$

$$d) f(x) = x^2$$

e)
$$f(x) = x^7$$

f)
$$f(x) = 2x^3$$

g)
$$f(x) = 3x + 2$$

h)
$$f(x) = x + \frac{1}{x}$$

i)
$$f(x) = -x^2 + x - \frac{7}{2}$$

$$j) f(x) = \frac{2x}{x+1}$$

e)
$$f(x) = x^7$$
 f) $f(x) = 2x^3$ g) $f(x) = 3x + 2$ h) $f(x) = x + \frac{1}{x}$ i) $f(x) = -x^2 + x - \frac{7}{2}$ j) $f(x) = \frac{2x}{x+1}$ k) $f(x) = \frac{-x^2 - x + 1}{x+1}$ l) $f(x) = \frac{4}{x}$

1)
$$f(x) = \frac{4}{x}$$

$$m) f(x) = \frac{1}{x^4}$$

n)
$$f(x) = 2x^5 + \sqrt{x}$$

o)
$$f(x) = (3x+2)x^2$$

n)
$$f(x) = 2x^5 + \sqrt{x}$$
 o) $f(x) = (3x+2)x^2$ p) $f(x) = (-2x+1)(x+1)$

Équation de la tangente

Exercice 11 Dans chaque cas, déterminer une équation de la tangente à \mathcal{C}_f au point a donné :

a)
$$f(x) = 3x^2 + 5x - 2$$
 et $a = -2$

a)
$$f(x) = 3x^2 + 5x - 2$$
 et $a = -2$ b) $f(x) = \frac{1}{2}(-3 + x + x^2)$ et $a = 4$ c) $f(x) = (2x + 1)^2$ et $a = 0$

c)
$$f(x) = (2x+1)^2$$
 et $a = 0$

Exercice 12 f est la fonction définie sur \mathbb{R} par $f(x) = -2x^2 + 4x$, et \mathcal{C}_f est sa courbe représentative.

- 1. Donner une équation de la tangente T à C_f au point A d'abscisse 3.
- 2. a) Etudier le signe de f(x) (-8x + 18).
 - b) En déduire la position relative de C_f par rapport à T.

Exercice 13 Soit f une fonction définie et dérivable sur \mathbb{R} et \mathcal{C}_f sa courbe représentative.

- 1. Montrer que la tangente à C_f au point A d'abscisse a passe par l'origine du repère si et seulement $\operatorname{si} f(a) = af'(a).$
- 2. Soit f définie sur IR par $f(x) = 2x^2 3x + 1$. Quels sont les points de C_f en lesquels la tangente passe par l'origine.

Exercice 14 Répondre à la question c) de l'exercice 1 : la tribune sera-t-elle évitée?

Applications de la dérivation

Exercice 15 Dresser le tableau de variation des fonctions de l'exercice 5 et des fonctions suivantes :

q)
$$f(x) = 2x^2 + 4x - 3$$
 r) $f(x) = 2x^3 + 3x^2 - 36x + 4$ s) $f(x) = \frac{-2x + 1}{x + 1}$ t) $f(x) = \frac{3}{x + 3} - \frac{2}{x + 2}$

Y. Morel - xymaths - Spécialité maths - 1ère générale

Exercice 16 f est la fonction définie par l'expression $f(x) = \frac{1}{-2x^2 + 4x - 3}$.

- 1. On définie la fonction g sur \mathbb{R} par l'expression $g(x) = -2x^2 + 4x 3$. Étudier les variations de g.
- 2. En déduire les variations de f puis le minimum de f sur ${\rm I\!R}.$

Exercice 17 f est la fonction définie sur \mathbb{R} par $f(x) = \frac{x^2 + 2x + 3}{4x^2 + 1}$.

- 1. A l'aide de la calculatrice tracer C_f et localiser le maximum de f.
- 2. Vérifier par le calcul s'il s'agit bien d'un maximum de f.

Exercice 18 Soit f la fonction définie sur [-10; 10] par $f(x) = -x^3 + 6x^2 - 10$.

Rechercher les éventuels extrema locaux et globaux de f.

Exercice 19 Soit la fonction f définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$, $a \neq 0$.

Déterminer les coordonnés de l'extremum de f. Est-ce un minimum ou un maximum?

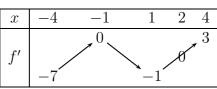
Exercice 20 Soit f une fonction définie et dérivable sur l'intervalle [-6; 4]. On donne le tableau de variation de la fonction f':

Préciser les éventuels extrema locaux de f.

Exercice 21 Soit f une fonction définie et dérivable sur l'intervalle [-4;4].

On donne le tableau de variation de la fonction f':

Préciser les éventuels extrema locaux de f.

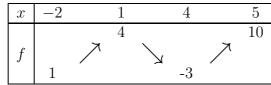


Exercice 22 La consommation C d'un véhicule peut s'exprimer en fonction de la vitesse v, pour une vitesse comprise entre 10 km/h et 130 km/h, par l'expression

$$C(v) = 0,06v + \frac{150}{v} .$$

À quelle vitesse faut-il rouler pour que la consommation soit minimale?

Exercice 23 Soit f une fonction définie et dérivable sur [-2; 5] et dont le tableau de variation est le suivant :



Déterminer le nombre de solutions, et l'intervalle où elles se situent, de l'équation

a)
$$f(x) = 0$$

b)
$$f(x) = 2$$

c)
$$f(x) = -5$$

Exercice 24 On considère la fonction définie sur \mathbb{R} par $f(x) = x^3 + x + 1$.

Montrer que l'équation f(x) = 0 admet une unique solution sur [-3; 2].

Déterminer un encadrement plus précis de cette solution.

Exercice 25 On considère la fonction définie sur IR par $f(x) = x^3 - 3x - 1$.

Montrer que l'équation f(x) = 0 admet exactement trois solutions, respectivement dans les intervalles]-2;-1[,]-1;1[et]1;2[.

Donner un encadrement d'amplitude 10^{-2} de la plus grande de ces solutions.

Exercice 26 f est la fonction définie sur IR par $f(x) = 4x^2 - 6x + 2$.

Montrer que la courbe C_f représentative de f est toujours au dessus de n'importe laquelle de ses tangentes.

Exercice 27 On dit que deux paraboles sont tangentes entre elles lorsqu'elles ont un point commun A et une tangente commune en A.

À tout nombre $m \neq 0$, on associe la parabole \mathcal{P}_m d'équation $y = mx^2 + (1-2m)x + m$.

Montrer que toutes ces paraboles sont tangentes entre elles.