Spécialité mathématiques Première générale

Fonctions trigonométriques Compléments sur les fonctions

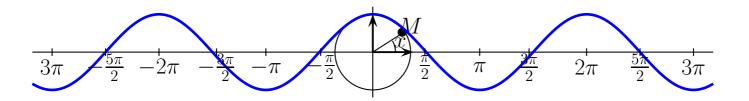
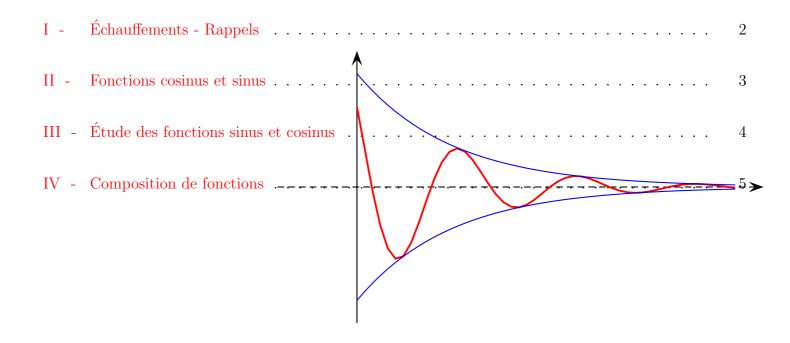


Table des matières

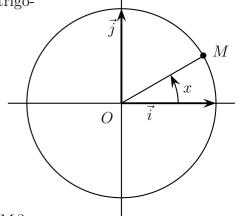


I - Échauffements - Rappels

Exercice 1 Soit x un nombre réel quelconque et M le point du cercle trigonométrique tel que $(\vec{i}, \overrightarrow{OM}) = x$.

a) Compléter le tableau et situer les angles sur le cercle :

x (deg)	0	45	60	90	135	180	270	360
x (rad)								



b) Rappeler quelles sont les coordonnées de M en fonction de x. À quel intervalle peut appartenir x? l'abscisse de M? l'ordonnée de M?

c) Rappeler les valeurs particulières :

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
$\sin(x)$						
$\cos(x)$						

d) Compléter les tableaux de signe :

x	$-\pi$	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	π
$\cos x$					

x	$-\pi$	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	π
$\sin x$					

e) Compléter les tableaux de variation :

x	$-\pi$	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	π
$\cos x$					

x	$-\pi$	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	π
$\sin x$					

II - Fonctions cosinus et sinus

Définition La fonction cosinus est la fonction qui à tout réel x associe le nombre $\cos(x)$. La fonction sinus est la fonction qui à tout réel x associe le nombre $\sin(x)$.

Comme vu dans l'exercice 1, on a pour $x \in [-\pi; \pi]$, les courbes



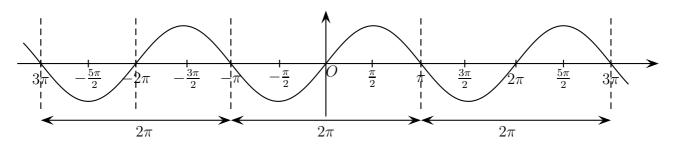
Propriété Pour tout réel x, $\cos(x + 2\pi) = \cos x$ et $\sin(x + 2\pi) = \sin x$.

Les fonctions $x \mapsto \cos x$ et $x \mapsto \sin x$ sont **périodiques** de période 2π .

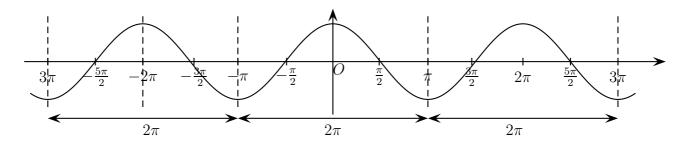
Les courbes représentatives des fonctions sinus et cosinus (sinusoïdes) sont inchangées par translation de vecteur $2\pi \vec{i}$.

Remarque : On a vu que $\sin\left(x+\frac{\pi}{2}\right)=\cos(x)$ et ainsi les courbes des sinus et cosinus sont simplement "décalées" de $\frac{\pi}{2}$, ou plus exactement translatées de $\frac{\pi}{2}\vec{i}$. Les deux courbes s'appellent des sinosoïdes.

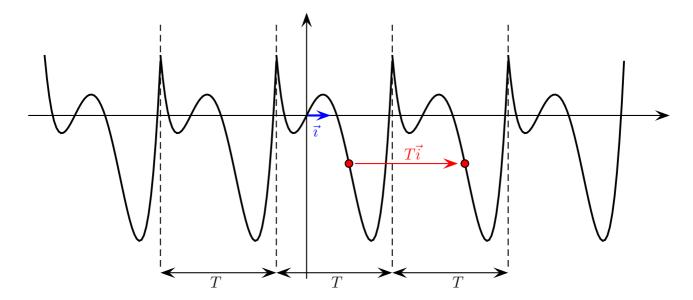
Courbe de la fonction sinus :



Courbe de la fonction cosinus :

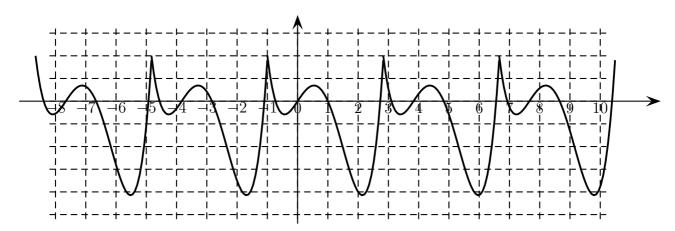


Définition Une fonction f est **périodique** de periode T lorsque pour tout réel x on a f(x+T) = f(x). Il suffit alors d'étudier / tracer la courbe de f sur un intervalle de longueur T puis de compléter la courbe par transalation de vecteur $T\vec{i}$.



Remarque : La fréquence du signal est alors $f=\frac{1}{T}$ et la pulsation $\omega=2\pi f=\frac{2\pi}{T}$

Exercice 2 Déterminer graphiquement la période de la fonction suivante :



Exercice 3 Soit f la fonction périodique de période 1 définie par f(t) = -2t + 1 si $t \in [0; 1]$. Tracer la représentation graphique de f sur [-2; 4].

Exercice 4 Soit f la fonction périodique de période 2 définie par $f(t) = t^2$ si $t \in [-1; 1]$. Tracer la représentation graphique de f sur [-3; 5].

Exercice 5 Soit f la fonction périodique, de période 2, définie par $f(t) = -2t^2 + 2$ si $t \in [-1; 1]$. Dresser le tableau de variations de f sur [-1; 1]. Tracer alors la représentation graphique de f sur [-3; 5].

III - Étude des fonctions sinus et cosinus

Propriété Les fonctions cosinus et sinus sont définies et dérivables sur IR, avec les dérivées

$$\cos' = -\sin$$
 $et \sin' = \cos$

On retrouve alors les sens de variation :

Pour la fonction sinus:

x	$-\pi$		$-\frac{\pi}{2}$		$\frac{\pi}{2}$		π
$f'(x) = \cos x$		_	Ф	+	Ф	_	
	0				1		
$f(x) = \sin x$		X		7		X	
			-1				0

Pour la fonction cosinus:

x	$-\pi$		0		π
$\sin x$	Ф	_	0	+	Ф
$f'(x) = -\sin x$	Ф	+	Ф	_	Ф
$f(x) = \cos x$	-1	7	1	\searrow	-1

Exercice 6 Préciser les équations des deux tangentes en 0 et en $\frac{\pi}{2}$ pour la courbe représentative de la fonction sinus.

Faire de même pour la courbe de la fonction cosinus.

Représenter alors graphiquement les deux sinusoïdes et leurs tangentes.

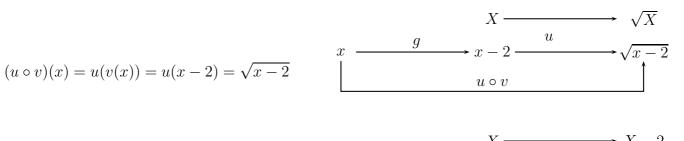
Composition de fonctions

Définition Etant donné deux fonctions f et g, on définit la fonction f composée de u et v, notée $f = u \circ v$ (u "rond" v) par :

$$f(x) = (u \circ v)(x) = u(v(x))$$

Exemple: Soit $u(x) = \sqrt{x}$ et v(x) = x - 2. Alors, pour tout $x \ge 2$,

$$(u \circ v)(x) = u(v(x)) = u(x-2) = \sqrt{x-2}$$



$$(v \circ u)(x) = v(u(x)) = v(\sqrt{x}) = \sqrt{x} - 2$$

Attention, en général, $u \circ v \neq v \circ u$! L'opération "composition" n'est pas <u>commutative</u>.

Exercice 7 Pour $h_1: x \mapsto \sqrt{x-1}$ et $h_2: x \mapsto x^2+1$, donner l'expression en fonction de x des fonctions suivantes:

$$f_1 = h_2 \circ h_1$$
 ; $f_2 = h_1 \circ h_2$; $f_3 = h_1 \circ h_1$; $f_4 = h_2 \circ h_2$

Exercice 8 Pour $h_1: x \mapsto \cos(x)$ et $h_2: x \mapsto x^2 + 1$, donner l'expression en fonction de x des fonctions suivantes:

$$f_1 = h_2 \circ h_1 \; ; \; f_2 = h_1 \circ h_2 \; ; \; f_3 = h_2 \circ h_1 \circ h_2$$

Exercice 9 Les fonctions u, v et w sont définies par les expressions

$$u(x) = x + 3$$
, $v(x) = \frac{1}{x}$ et $w(x) = 2 - 7x$.

- 1. Soit $f = w \circ v \circ u$. Démontrer que f est définie par l'expression $f: x \mapsto 2 \frac{7}{x+3}$.
- 2. Étudier le sens de variation de f sur [-2, 4].
- 3. Encadrer f(x) au mieux sur [-2, 4].

Propriété En tout point x où la fonction $f = u \circ v$ est dérivable, on a

$$f'(x) = (u \circ v)'(x) = v'(x) \times u'(v(x))$$

Exemples:

- $f(x) = e^{3x+1}$ alors $f = u \circ v$ avec $u(x) = e^x$ et v(x) = 3x+1, donc $u'(x) = e^x$ et v'(x) = 3 d'où $f'(x) = v'(x)u'(v(x)) = 3e^{3x+1}$
- $f(x) = \sin(3x+1)$ alors $f = u \circ v$ avec $u(x) = \sin(x)$ et v(x) = 3x+1, donc $u'(x) = \cos(x)$ et v'(x) = 3 d'où $f'(x) = v'(x)u'(v(x)) = 3\cos(3x+1)$
- $f(x) = (3x+1)^2$ alors $f = u \circ v$ avec $u(x) = x^2$ et v(x) = 3x+1, donc u'(x) = 2x et v'(x) = 3 d'où $f'(x) = v'(x) u'(v(x)) = 3 \times 2(3x+1) = 6(3x+1)$
- $f(x) = (3x+1)^9$ alors $f = u \circ v$ avec $u(x) = x^9$ et v(x) = 3x+1, donc $u'(x) = 9x^8$ et v'(x) = 3 d'où $f'(x) = v'(x)u'(v(x)) = 3 \times 9(3x+1)^8 = 27(3x+1)^8$

En pratique, pour obtenir la dérivée d'une fonction composée u(v(x)) on n'oublie pas de multiplier par la dérivée de la fonction « à l'intérieur » :

Corollaire

Fonction usuelle	Dérivée
e^x	e^x
$\frac{1}{x}$	$-\frac{1}{x^2}$
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
x^2	2x
$x^n, n \in \mathbb{Z}$	nx^{n-1}
\sqrt{x}	$\frac{1}{2\sqrt{x}}$

Fonction composée	Dérivée
e^u	$u'e^u$
$\frac{1}{u}$	$-\frac{u'}{u^2}$
$\sin(u)$	$u'\cos(u)$
$\cos(u)$	$-u'\sin(u)$
u^2	2u'u
$u^n, n \in \mathbb{Z}$	$nu'u^{n-1}$
\sqrt{u}	$\frac{u'}{2\sqrt{u}}$

Exercice 10 Calculer la fonction dérivée des fonctions suivantes :

$$f_1(x) = (6x+3)^3 f_2(x) = (-2x^2+3)^5 f_3(x) = e^{6x^2+1} f_4(x) = xe^{-x^2} f_5(x) = e^{\sin(x)}$$

$$f_6(x) = \frac{1}{x^2+1} f_7(x) = \frac{3}{x^2+1} f_8(x) = \frac{3x}{x^2+1} f_9(x) = \sin(x^2+1) f_{10}(x) = \cos(3x^2+x)$$

$$f_{11}(x) = \sin(2\pi x) f_{12}(x) = \frac{\sin(x)}{\cos(x)} f_{13}(x) = x(2x-1)^3 f_{14}(x) = \sqrt{3x^2+1} f_{15}(x) = e^{\cos(3x^2)}$$

Exercice 11 Étudier le sens de variation, puis tracer l'allure de la courbe, des fonctions suivantes :

$$f_1(x) = (6x+3)^3$$
 $f_2(x) = e^{6x^2+1}$ $f_3(x) = xe^{-\frac{x^2}{2}}$ $f_4(x) = \frac{3}{x^2+1}$ $f_5(x) = \sqrt{3x^2+1}$

Exercice 12 On note C la courbe représentative de la fonction $f: x \mapsto e^{-x^2}$ définie sur [0; 2], dans un repère $(O; \vec{i}, \vec{j})$. Pour M(x; y) un point de la courbe C, on note aussi N(x; 0) et M(0; y) les points et enfin A(x) l'aire du rectangle ONMP.

Déterminer la position du point M sur la courbe C pour laquelle l'aire du rectangle ONMP est maximale.

Exercice 13 On donne la formule
$$\cos(x) + \sin(x) = \sqrt{2}\cos\left(x - \frac{\pi}{4}\right)$$
.
On note $f(x) = e^{-x}$, $g(x) = -f(x)$ et $h(x) = e^{-x}\cos\left(x + \frac{\pi}{4}\right)$.

- a) Dresser le tableau de variation de f et tracer dans un repère sa courbe. Tracer dans ce même repère la courbe de la fonction g.
- b) Étudier le sens de variation de la fonction h sur $[0; 2\pi]$.
- c) Tracer sur le graphique précécent l'allure de la courbe de h.