Produit scalaire - Exercices

Spécialité mathématiques Première générale

Échauffements - Rappels

Exercice 1 Soit, dans un RON (repère orthonormé) les points A(1;2), B(4;3) et C(6;-1). Donner les coordonnées de \overrightarrow{AB} et \overrightarrow{AC} et les longueurs AB et AC.

Exercice 2 Rappeler les formules de trigonométrie, cosinus, sinus et tangente dans un triangle rectangle. Que vaut la hauteur dans un triangle équilatéral de côté 1? que vaut son aire?

Exercice 3

- a) Rappeler la relation de Chasles.
- b) Dans un repère, on donne $\overrightarrow{AB}\begin{pmatrix} 3\\2 \end{pmatrix}$, $\overrightarrow{BC}\begin{pmatrix} 5\\-4 \end{pmatrix}$ et $\overrightarrow{AE}\begin{pmatrix} 8\\-1 \end{pmatrix}$. Calculer les coordonnées de \overrightarrow{AC} et \overrightarrow{BE} .

Angle en radian et trigonométrie

Exercice 4 Donner la mesure principale de :

•
$$-\frac{5\pi}{4}$$
 • $\frac{11\pi}{4}$ • $-\frac{11\pi}{4}$ • $-\frac{13\pi}{4}$ • $\frac{27\pi}{4}$ • $\frac{2005\pi}{4}$ • $\frac{37\pi}{6}$ • $\frac{178\pi}{8}$

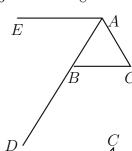
$$\bullet$$
 $-\frac{11\pi}{4}$

$$\bullet$$
 $-\frac{13\pi}{4}$

$$\bullet$$
 $\frac{27\pi}{4}$

$$\bullet \ \frac{2005\pi}{4}$$

$$\bullet \ \frac{37\pi}{6} \qquad \bullet$$



Déterminer la mesure principale de chacun des angles orientés :

Exercice 5 ABC est un triangle équilatéral tel que $(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\pi}{2}$ et

$$(\overrightarrow{BA}, \overrightarrow{BC}), (\overrightarrow{CA}, \overrightarrow{CB}), (\overrightarrow{BC}, \overrightarrow{AB}), (\overrightarrow{AB}, \overrightarrow{CB}), (\overrightarrow{AB}, \overrightarrow{AE}),$$

Exercice 6

(AE) // (BC).

- 1. On s'intéresse à un triangle ABC isocèle rectangle en B et d'hypothénuse Rappeler la mesure de l'angle $(\overrightarrow{AB}, \overrightarrow{AC})$ et calculer son cosinus et son sinus.
- 2. On s'intéresse à un triangle ABC équilatéral de côté 1. Rappeler la mseure de l'angle $(\overrightarrow{AB}, \overrightarrow{AC})$ et calculer son cosinus et son sinus.



Exercice 7 Donner les valeurs exactes de :

$$\cos\left(-\frac{\pi}{3}\right); \quad \sin\left(-\frac{\pi}{3}\right); \quad \cos\left(\frac{5\pi}{6}\right); \quad \sin\left(\frac{5\pi}{6}\right); \quad \cos\left(\frac{4\pi}{3}\right); \quad \sin\left(\frac{4\pi}{3}\right); \quad \cos\left(-\frac{2\pi}{3}\right); \quad \sin\left(-\frac{2\pi}{3}\right);$$

Exercice 8

- 1. Soit $x \in [0; \pi]$ tel que $\cos x = -\frac{1}{4}$. Déterminer $\sin(x)$.
- 2. Soit $x \in \left[\frac{\pi}{2}; \pi\right]$ tel que $\sin x = \frac{3}{5}$. Déterminer $\cos(x)$.

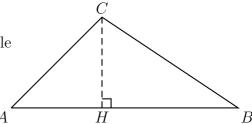
III - Produit scalaire

Exercice 9 Défaut d'orthogonalité

ABC est un triangle quelconque du plan. On désigne par H le projeté orthogonal de C sur la droite (AB).

On note

$$\Delta = \frac{AB^2 + AC^2 - BC^2}{2}$$



- 1. Quelle est la valeur de Δ si le triangle est rectangle en A?
- 2. On suppose que l'angle $(\overrightarrow{AB}, \overrightarrow{AC})$ est un angle aigu.
 - a) Où se situe le point H?
 - b) En utilisant le théorème de Pythagore dans les triangles AHC et CHB et en développant $AB^2 = (AH + HB)^2$, montrer que $\Delta = AB \times AH$.
- 3. On suppose maintenant que l'angle $(\overrightarrow{AB}, \overrightarrow{AC})$ est obtus. Faire une figure et démontrer de même que précédemment que $\Delta = -AB \times AH$.
- 4. Montrer alors que, dans les deux cas, on a $\Delta = AB \times AC \times \cos\left(\overrightarrow{AB}, \overrightarrow{AC}\right)$.
- 5. On se place dans un RON $\left(O; \vec{i}, \vec{j}\right)$ dans lequel on a les coordonnées $\overrightarrow{AB} \left(\begin{array}{c} x \\ y \end{array} \right)$ et $\overrightarrow{AC} \left(\begin{array}{c} x' \\ y' \end{array} \right)$.
 - a) En utilisant la relation de Chasles écrire les coordonnées du vecteur \overrightarrow{BC} .
 - b) Prouver alors que $\Delta = xx' + yy'$.

Exercice 10 a) Dans un triangle équilatéral \overrightarrow{ABC} de côté 1, calcul le produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{AC}$.

b) Dans un rectangle ABCD, que vaut $\overrightarrow{AB} \cdot \overrightarrow{AD}$?

Exercice 11 Calculer le produit scalaire $\vec{u} \cdot \vec{v}$ avec

a)
$$\vec{u} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 5 \\ 2 \end{pmatrix}$ b) $\vec{u} \begin{pmatrix} -3 \\ -4 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 8 \\ -6 \end{pmatrix}$ c) $\vec{u} \begin{pmatrix} 1/2 \\ 4 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 5 \\ -3 \end{pmatrix}$ d) $\vec{u} \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ et $\vec{v} = \vec{u}$

Exercice 12 Dans chaque cas calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$ et en déduire une valeur de l'angle \widehat{BAC} :

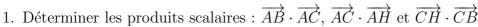
a)
$$A(2;3)$$
, $B(4;-1)$ et $C(3;6)$ b) $A(-1;2)$, $B(-3;-3)$ et $C(5;4)$ c) $A(1;2)$, $B(4;8)$ et $C(-1;3)$

Exercice 13 Dans le plan rapporté à un RON, on considère les points A(0;1), B(-1;-6), C(13;-8) et D(-8;-5). Les droites (AB) et (CD) sont-elles perpendiculaires?

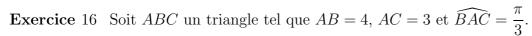
Exercice 14 Soit $\vec{u} \begin{pmatrix} \sqrt{3} \\ 3 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x \\ 1 \end{pmatrix}$. Déterminer les valeurs de x pour que :

a)
$$\vec{u} \cdot \vec{v} = 5$$
 a) \vec{u} et \vec{v} soient orthogonaux b) $(\vec{u}, \vec{v}) = 0$ c) $(\vec{u}, \vec{v}) = \frac{\pi}{3}$ d) $(\vec{u}, \vec{v}) = \frac{\pi}{2}$ e) $(\vec{u}, \vec{v}) = \frac{\pi}{6}$

Exercice 15 ABC est un triangle équilatéral de côté 1. I est le pied de la hauteur issue de C.



2. Calculer les produits scalaires précédents en utilisant un RON $(A; \overrightarrow{AB}; \overrightarrow{AD})$.



- 1. Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$ et en déduire $\overrightarrow{CB} \cdot \overrightarrow{CA}$
- 2. L'angle \widehat{ACB} est-il aigu ou obtus?

Exercice 17 ABCD est un carré de côté 1, et E et F sont deux points tels que $\overrightarrow{CE} = \frac{3}{2}\overrightarrow{CD}$ et $\overrightarrow{BF} = \frac{3}{2}\overrightarrow{BC}$.

Démontrer que les droites (AF) et (BE) sont perpendiculaires :

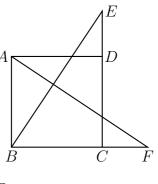
- 1. Par un calcul vectoriel.
- 2. En se plaçant dans le repère $(B; \overrightarrow{BC}, \overrightarrow{BA})$.

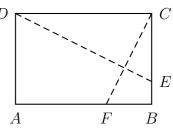
Exercice 18 ABCD est un rectangle tel que $AB = \frac{3}{2}BC$ et $\overrightarrow{AF} = \frac{2}{3}\overrightarrow{AB}$ et $\overrightarrow{BE} = \frac{1}{4}\overrightarrow{BC}$.

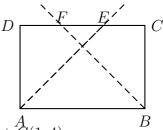
Montrer que les droites (DE) et (CF) sont perpendiculaires :

- a) Par un calcul vectoriel
- b) En se plaçant dans un repère (on pourra montrer pour commencer que AF = AD).

Exercice 19 ABCD est un rectangle dans lequel on place les points E et F sur le segment [CD] tels que DE = FC = BC. Montrer que les droites (DE) et (CF) sont perpendiculaires.







Exercice 20 On considère, dans un RON, les points A(-4; -2), B(2; -3) et C(1; 4).

Parmi les points suivants : D(0; -2), $E\left(\frac{1}{2}; 1\right)$, F(2; 7), quels sont ceux qui appartiennent à la hauteur issue de C dans le triangle ABC?

Exercice 21 On considère le point A(1;3) et la droite d d'équation y=2x-1. On note de plus H le projeté orthogonal de A sur la droite d.

- a) Faire une figure.
- b) Donner les coordonées de 2 points de la droite d. En déduire un vecteur directeur \vec{u} de la droite d.
- c) Que peut-on dire des vecteurs \overrightarrow{AH} et \overrightarrow{u} ? En exprimant de plus que $H \in d$, calculer alors les coordonnées de H.
- d) Calculer la distance de A à la droite d.

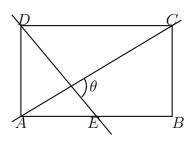
Exercice 22 Soit ABC un triangle avec AB=3, AC=8 et $\widehat{BAC}=22^{\circ}$ Déterminer toutes les longueurs et les angles de ce triangle.

Exercice 23 ABCD est un parallélogramme tel que $AB=4,\,AD=5$ et AC=7.

- 1. Calculer $\overrightarrow{AB} \cdot \overrightarrow{AD}$, $\overrightarrow{AB} \cdot \overrightarrow{CA}$ et $\overrightarrow{CB} \cdot \overrightarrow{CD}$.
- 2. Déterminer une valeur approchée des mesures des angles $(\overrightarrow{AB}, \overrightarrow{AD})$, $(\overrightarrow{AB}, \overrightarrow{AC})$ et $(\overrightarrow{AD}, \overrightarrow{AC})$.

Exercice 24 ABCD est un rectangle tel que AD = 3 et AB = 5. E est le milieu de [AB].

- 1. Calculer les longueurs AC et DE.
- 2. En exprimant chacun des vecteurs \overrightarrow{AC} et \overrightarrow{DE} en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AD} , calculer le produit scalaire $\overrightarrow{AC} \cdot \overrightarrow{DE}$.
- 3. En déduire la valeur de l'angle $\theta = (\overrightarrow{DE}, \overrightarrow{AC})$ à 10^{-2} degré près.
- 4. Introduire un RON, donner les coordonnées des points A, C, D et E et calculer une valeur de l'angle θ .



Exercice 25

ABCD et AEFG sont deux carrés de côtés respectifs 6 cm et 4 cm.

O est le milieu de [GD].

Les droites (OA) et (EB) sont-elles perpendiculaires?

