Polynômes complexes - Exercices Terminale géne Factorisation dans $\mathbb C$ et racines de l'unité

Exercice 1

- a) Résoudre $z^2 4z 5 = 0$. Factoriser ensuite $z^2 4z 5$.
- b) Résoudre $z^2 4z + 5 = 0$. Factoriser ensuite $z^2 4z + 5$.
- c) Écrire z = -1 sous forme exponentielle. Donner alors trois nombres complexes z tels que $z^3 = -1$.
- d) Écrire sous forme exponentielle $z_0 = \sqrt{2} + i\sqrt{2}$. Résoudre alors $z^2 = \sqrt{2} + i\sqrt{2}$.
- e) Donner 4 nombres complexes z tels que $z^4 = 1$. Écrire ces nombres sous forme exponentielle.

Exercice 2

- 1. Soit $P(z) = z^2 + 3z 4$. Montrer que 1 est une racine de P et factoriser P par z 1.
- 2. On considère l'équation $z^3 + 2z^2 z 2 = 0$. Vérifier que 1 est une solution, puis déterminer toutes les solutions de cette équation.
- 3. Soit $P(z) = 2z^3 + 3z^2 z 2$. Montrer que -1 est une racine puis factoriser P.
- 4. Soit $P(z) = z^4 2z^3 z + 2$. Montrer que 1 et 2 sont racines de P puis factoriser P.
- 5. Soit $P(z) = -2z^2 + 3z 2 3i$. Montrer que i est une racine de P et factoriser P.
- 6. Soit $P(z) = z^3 8$. Déterminer une racine réelle simple a de P, puis factoriser P.

Exercice 3

- a) Factoriser $z^3 i^3$ par z i
- b) Factoriser $z^4 1$ puis $z^5 1$.

Exercice 4 Soit P le polynôme défini par : $P(z) = z^3 - (2+i)z^2 + 2(1+i)z - 2i$.

- 1. Calculer P(i).
- 2. Trouver deux nombres réels p et q tels que $P(z) = (z i)(z^2 + pz + q)$.
- 3. Déterminer alors toutes les racines du polynôme ${\cal P}.$

Exercice 5 On considère le polynôme P défini sur \mathbb{C} par $P(z)=z^4-4z^3+4z^2-4z+3$.

- a) Montrer qu'il existe un polynôme Q à coefficients réels tel que $P(z)=(z^2+1)Q(z)$ pour tout nombre complexe z.
- b) En déduire toutes les racines dans ${\rm I\!R},$ puis dans ${\rm I\!R},$ du polynôme P.

Exercice 6 Soit le polynôme P défini sur \mathbb{C} par : $P(z) = 3z^3 + (1+6i)z^2 + 2(8+i)z + 32i$.

- a) Vérifier que $z_0 = -2i$ est une racine de P.
- b) En déduire une factorisation de P, et déterminer alors toutes les racines de P.

Exercice 7 Soit un nombre complexe z tel que $z^2 = 3 + 4i$.

- a) Que vaut $|z|^2$?
- b) Déterminer l'écriture algébrique du nombre z recherché.

Exercice 8 On considère l'équation $(E): z^2 + 2iz - 2 = 0$

- a) Développer $(z+i)^2$ et en déduire que l'équation (E) est équivalente à $(z+i)^2-1=0$.
- b) En déduire les solutions de (E).
- c) Déterminer directement les solutions de (E) avec la formule générale sur le second degré complexe.

Exercice 9 Résoudre les équations $(E_1): z^2 + 3z - 4 = 0$, $(E_2): z^2 - (1+2i)z + (-3+i) = 0$, $(E_3): z^2 - (2-i)z + 3 - i = 0$, et $(E_4): z^2 - (-1+4i)z - 5 - 5i$

Exercice 10 Soit le polynôme complexe P défini par $P(z) = z^3 + (2-2i)z^2 + (4-4i)z - 8i$.

- a) Montrer que 2i est une solution de l'équation P(z) = 0.
- b) Démontrer que $P(z) = (z 2i)(z^2 + 2z + 4)$.
- c) En déduire alors toutes les solutions de l'équation P(z) = 0.

Exercice 11 Soit le polynôme complexe P défini par $P(z) = z^3 - (2 + i\sqrt{2})z^2 + 2(1 + i\sqrt{2})z - 2i\sqrt{2}$.

- a) Montrer que $z_0 = i\sqrt{2}$ est une racine de P.
- b) Factoriser alors P et déterminer toutes les solutions de l'équation P(z) = 0.

Exercice 12

- 1. Factoriser $z^3 1$ et en déduire toutes les solutions de l'équation $(E): z^3 = 1$.
- 2. On note j la solution de (E) dont la partie imaginaire est strictement positive.
 - a) Donner la forme algébrique de j.
 - b) Démontrer les égalités suivantes : $j^3=1$, $j^2+j+1=0$, $j^2=\overline{j}$, $\frac{1}{j}=\overline{j}$

Exercice 13 Résoudre les équations $z^3 = 1$, puis $z^4 = 1$.

Exercice 14

- 1. Déterminer l'ensemble des racines 4-ième de l'unité, noté \mathcal{U}_4 puis tracer le polygone dont les sommets sont ces racines. Calculer le périmètre de ce polygone.
- 2. Déterminer l'ensemble des racines 6-ième de l'unité, noté \mathcal{U}_6 puis tracer le polygone dont les sommets sont ces racines. Calculer le périmètre de cet hexagone.

Exercice 15 Écrire $a = 5 - 5i\sqrt{3}$ sous forme exponentielle.

En déduire un nombre complexe z tel que $z^4=a$.

À l'aide des racines 4-ième de l'unité, donner alors toutes les solutions de l'équations $z^4 = a$.

Exercice 16

- 1. On pose $\omega = e^{i\frac{2\pi}{5}}$
 - a) Calculer ω^5 .
 - b) Factoriser $\omega^5 1$ par $\omega 1$. En déduire que $1 + \omega + \omega^2 + \omega^3 + \omega^4 = 0$
- 2. Généralisation : on pose $\omega = e^{i\frac{2\pi}{n}}$ pour un entier naturel $n \ge 2$.

Rappeler l'expression de la somme $S = \sum_{k=0}^p \omega^k$ pour un entier $p \geqslant 1$

En déduire que $1 + \omega + \omega^2 + \cdots + \omega^{n-1} = 0$.

Exercice 17 Développer et simplifier l'expression $(x+1)^4 - (x-1)^4$. En déduire la valeur exacte de $1001^4 - 999^4$.

Exercice 18

- a) En utilisant la formule du binôme de Newton, écrire la forme algébrique de $(1+i)^4$.
- b) Retrouver ce résultat en utilisant la forme exponentielle de 1+i.

Exercice 19 On considère le polynôme $P(x) = (2x - 3)^8$.

- a) Quel est le terme de plus haut degré de P?
- b) Quel est le terme constant de P?
- c) Quel est le coefficient de x^6 dans P(x)?

Exercice 20 Pour quelle(s) valeur(s) du réel a le nombre complexe $(a+i)^3$ est-il imaginaire pur ?

Exercice 21 En utilisant la formule du binôme de Newton, calculer les sommes

$$S_1 = \sum_{k=0}^n \binom{n}{k} 2^k$$
, $S_2 = \sum_{k=0}^n \binom{n}{k}$ et $S_3 = \sum_{k=0}^n (-1)^k \binom{n}{k}$.

Exercice 22 Calculer la somme $S = \sum_{k=0}^{n} k \binom{n}{k}$.

(Indice: on pourra dériver de deux manières différentes la fonction f définie par $f(x) = (1+x)^n$.)

Exercice 23 Soit la matrice $A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$, avec a et b deux réels.

Trouver toutes les matrices carrées B qui commutent avec A, c'est-à-dire telles que AB = BA.

Exercice 24 Soit la matrice $A = \begin{pmatrix} 3 & 5 \\ 0 & 3 \end{pmatrix}$, et B la matrice telle que $A = 3I_2 + B$.

Donner la matrice B, puis B^2 et B^3 puis B^n pour tout entier n. En déduire A^n pour tout entier n.

Exercice 25 Soit la matrice $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ et $B = A - I_3$, où I est la matrice identité.

Calculer B^n pour tout $n \in \mathbb{N}$. En déduire la matrice A^n en fonction de l'entier n.

Exercice 26 Soit
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 2 & 0 & 4 \\ 0 & 3 & 0 \end{pmatrix}$$
. On note $U = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix}$ et $L = A - U$.

Calculer U^n et L^n pour tout entier n. En déduire la matrice A^n en fonction de l'entier n.

Exercice 27 Soit la matrice $A = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$, et B la matrice telle que $A = I_2 + B$.

- a) Calculer A^2 et A^3 .
- b) Calculer la somme $S = \sum_{k=0}^{n} \binom{n}{k}$.
- c) Calculer B^2 et en déduire B^n pour tout entier n.
- d) Exprimer alors $A^n.$ Vérifier bien sûr la formule trouvée avec les résultats du).