BACCALAURÉAT GÉNÉRALE ÉPREUVE D'ENSEIGNEMENT DE SPÉCIALITÉ

- Mathématiques -

15 mars 2021 (Sujet 2)

Durée de l'épreuve : 4 heures

L'usage de la calculatrice avec mode examen actif est autorisé.

L'usage de la calculatrice sans mémoire, « type collège », est autorisé.

Le candidat traite 4 exercices : les exercices 1, 2 et 3 communs à tous les candidats et un seul des deux exercices A ou B.

Exercice 1, commun à tous les candidats

5 points

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte.

Une réponse exacte rapporte un point. Une réponse fausse, une réponse multiple ou l'absence de réponse à une question ne rapporte ni n'enlève de point.

Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n'est demandée.

PARTIE I

Dans un centre de traitement du courrier, une machine est équipée d'un lecteur optique automatique de reconnaissance de l'adresse postale. Ce système de lecture permet de reconnaître convenablement 97 % des adresses; le reste du courrier, que l'on qualifiera d'illisible pour la machine, est orienté vers un employé du centre chargé de lire les adresses.

Cette machine vient d'effectuer la lecture de neuf adresses. On note X la variable aléatoire qui donne le nombre d'adresses illisibles parmi ces neuf adresses.

On admet que X suit la loi binomiale de paramètres n = 9 et p = 0,03.

- 1. La probabilité qu'aucune des neuf adresses soit illisible est égale, au centième près, à :
 - **a.** 0

- **c.** 0, 24
- **d.** 0,76
- 2. La probabilité qu'exactement deux des neuf adresses soient illisibles pour la machine est :

a.
$$\binom{9}{2} \times 0,97^2 \times 0,03^7$$

b.
$$\binom{7}{2} \times 0,97^2 \times 0,03^7$$

c.
$$\binom{9}{2} \times 0,97^7 \times 0,03^2$$

a.
$$\binom{9}{2} \times 0,97^2 \times 0,03^7$$
 b. $\binom{7}{2} \times 0,97^2 \times 0,03^7$ **c.** $\binom{9}{2} \times 0,97^7 \times 0,03^2$ **d.** $\binom{7}{2} \times 0,97^7 \times 0,03^2$

- 3. La probabilité qu'au moins une des neuf adresses soit illisible pour la machine est :
 - **a.** P(X < 1)
- **b.** $P(X \le 1)$
- **c.** $P(X \ge 2)$
- **d.** 1 P(X = 0)

PARTIE II

Une urne contient 5 boules vertes et 3 boules blanches, indiscernables au toucher.

On tire au hasard successivement et sans remise deux boules de l'urne.

On considère les évènements suivants :

- V_1 : « la première boule tirée est verte »;
- B_1 : « la première boule tirée est blanche »;
- V_2 : « la seconde boule tirée est verte »;
- B_2 : « la seconde boule tirée est blanche ».
- 4. La probabilité de V_2 sachant que V_1 est réalisé, notée $P_{V_1}(V_2)$, est égale à : **a.** $\frac{5}{8}$ **b.** $\frac{4}{7}$ **c.** $\frac{5}{14}$

- 5. La probabilité de l'évènement V_2 est égale à : **a.** $\frac{5}{8}$ **b.** $\frac{5}{7}$

d. $\frac{3}{7}$

On considère les suites (u_n) et (v_n) définies pour tout entier naturel n par :

$$\begin{cases} u_0 = v_0 = 1 \\ u_{n+1} = u_n + v_n \\ v_{n+1} = 2u_n + v_n \end{cases}$$

Dans toute la suite de l'exercice, on admet que les suites (u_n) et (v_n) sont strictement positives.

- 1. a) Calculez u_1 et v_1 .
 - b) Démontrer que la suite (v_n) est strictement croissante, puis en déduire que, pour tout entier naturel $n, v_n \ge 1$.
 - c) Démontrer par récurrence que, pour tout entier naturel n, on a : $u_n \ge n+1$.
 - d) En déduire la limite de la suite (u_n) .
- 2. On pose, pour tout entier naturel n:

$$r_n = \frac{v_n}{u_n}.$$

On admet que:

$$r_n^2 = 2 + \frac{(-1)^{n+1}}{u_n^2}$$

a) Démontrer que pour tout entier naturel n:

$$-\frac{1}{u_n^2} \leqslant \frac{(-1)^{n+1}}{u_n^2} \leqslant \frac{1}{u_n^2}.$$

b) En déduire :

$$\lim_{n \to +\infty} \frac{(-1)^{n+1}}{u_n^2}.$$

- c) Déterminer la limite de la suite (r_n^2) et en déduire que (r_n) converge vers $\sqrt{2}$.
- d) Démontrer que pour tout entier naturel n,

$$r_{n+1} = \frac{2 + r_n}{1 + r_n}$$

e) On considère le programme suivant écrit en langage Python:

$$\begin{aligned} & \text{def seuil()}: \\ & n = 0 \\ & r = 1 \\ & \text{while } abs(r - sqrt(2)) > 10^{**}(-4): \\ & r = (2+r)/(1+r) \\ & n = n+1 \\ & \text{return } n \end{aligned}$$

(abs désigne la valeur absolue, sqrt la racine carrée et 10^{**} (-4) représente 10^{-4}). La valeur de n renvoyée par ce programme est 5.

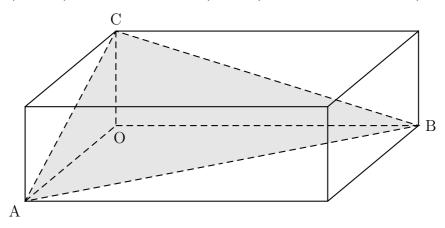
À quoi correspond-elle?

Exercice 3, commun à tous les candidats

4 points

Dans l'espace rapporté à un repère orthonormé $\left(O;\vec{i},\vec{j},\vec{k}\right)$, on considère les points :

A de coordonnées (2; 0; 0), B de coordonnées (0; 3; 0) et C de coordonnées (0; 0; 1).



L'objectif de cet exercice est de calculer l'aire du triangle ABC.

- 1. a) Montrer que le vecteur $\vec{n} \begin{pmatrix} 3 \\ 2 \\ 6 \end{pmatrix}$ est normal au plan (ABC).
 - b) En déduire qu'une équation cartésienne du plan (ABC) est : 3x + 2y + 6z 6 = 0.
- 2. On note d la droite passant par O et orthogonale au plan (ABC).
 - a) Déterminer une représentation paramétrique de la droite d.
 - b) Montrer que la droite d coupe le plan (ABC) au point H de coordonnées $(\frac{18}{49}; \frac{12}{49}; \frac{36}{49})$.
 - c) Calculer la distance OH.
- 3. On rappelle que le volume d'une pyramide est donné par : $V = \frac{1}{3}\mathcal{B}h$, où \mathcal{B} est l'aire d'une base et h est la hauteur de la pyramide correspondant à cette base.

En calculant de deux façons différentes le volume de la pyramide OABC, déterminer l'aire du triangle ABC.

EXERCICE au choix du candidat

5 points

Le candidat doit traiter un seul des deux exercices A ou B.

Il indique sur sa copie l'exercice choisi : exercice A ou exercice B.

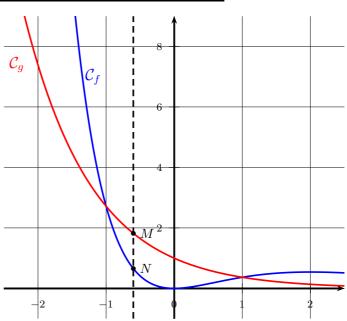
Pour éclairer son choix, les principaux domaines abordés par chaque exercice sont indiqués dans un encadré.

Exercice A

Principaux domaines abordés : Fonction exponentielle ; dérivation.

Le graphique ci-contre représente, dans un repère orthogonal, les courbes C_f et C_g des fonctions f et g définies sur \mathbb{R} par :

$$f(x) = x^2 e^{-x}$$
 et $g(x) = e^{-x}$.



La question 3 est indépendante des questions 1 et 2.

- 1. a) Déterminer les coordonnées des points d'intersection de \mathcal{C}_f et \mathcal{C}_q .
 - b) Étudier la position relative des courbes C_f et C_g .
- 2. Pour tout nombre réel x de l'intervalle [-1; 1], on considère les points M de coordonnées (x; f(x)) et N de coordonnées (x; g(x)), et on note d(x) la distance MN. On admet que $: d(x) = e^{-x} x^2 e^{-x}$. On admet que la fonction d est dérivable sur l'intervalle [-1; 1] et on note d' sa fonction dérivée.
 - a) Montrer que $d'(x) = e^{-x} (x^2 2x 1)$.
 - b) En déduire les variations de la fonction d sur l'intervalle [-1; 1].
 - c) Déterminer l'abscisse commune x_0 des points M_0 et N_0 permettant d'obtenir une distance $d(x_0)$ maximale, et donner une valeur approchée à 0, 1 près de la distance M_0N_0 .
- 3. Soit Δ la droite d'équation y = x + 2.

On considère la fonction h dérivable sur \mathbb{R} et définie par : $h(x) = e^{-x} - x - 2$.

En étudiant le nombre de solutions de l'équation h(x) = 0, déterminer le nombre de points d'intersection de la droite Δ et de la courbe C_g .

Exercice B

Principaux domaines abordés : Fonction logarithme ; dérivation.

Partie I : Étude d'une fonction auxiliaire

Soit g la fonction définie sur]0; $+\infty[$ par :

$$q(x) = \ln(x) + 2x - 2.$$

- 1. Déterminer les limites de g en $+\infty$ et 0.
- 2. Déterminer le sens de variation de la fonction g sur]0; $+\infty[$.
- 3. Démontrer que l'équation g(x) = 0 admet une unique solution α sur]0; $+\infty[$.
- 4. Calculer g(1) puis déterminer le signe de g sur]0; $+\infty[$.

Partie II : Étude d'une fonction f

On considère la fonction f, définie sur]0; $+\infty[$ par :

$$f(x) = \left(2 - \frac{1}{x}\right) (\ln(x) - 1).$$

1. a) On admet que la fonction f est dérivable sur]0; $+\infty[$ et on note f' sa dérivée. Démontrer que, pour tout x de]0; $+\infty[$, on a :

$$f'(x) = \frac{g(x)}{x^2}.$$

- b) Dresser le tableau de variation de la fonction f sur]0; $+\infty[$. Le calcul des limites n'est pas demandé.
- 2. Résoudre l'équation f(x) = 0 sur]0; $+\infty[$ puis dresser le tableau de signes de f sur l'intervalle]0; $+\infty[$.

Partie III : Étude d'une fonction F admettant pour dérivée la fonction f

On admet qu'il existe une fonction F dérivable sur]0; $+\infty[$ dont la dérivée F' est la fonction f. Ainsi, on a: F' = f.

On note C_F la courbe représentative de la fonction F dans un repère orthonormé $(O; \vec{i}, \vec{j}, \vec{k})$. On ne cherchera pas à déterminer une expression de F(x).

- 1. Étudier les variations de F sur]0; $+\infty[$.
- 2. La courbe C_F représentative de F admet-elle des tangentes parallèles à l'axe des abscisses? Justifier la réponse.