Corrigé du devoir maison: Suites et limites Terminale générale Spécialité maths

Exercice 1 —
$$f(x) = \frac{2x+1}{3x+1}$$
 donc $f = \frac{u}{v}$ et alors, après calculs, $f'(x) = -\frac{1}{(3x+1)^2}$

Comme $(3x+1)^2 \ge 0$ pour tout réel x, on trouve donc que f'(x) < 0 et donc que f est strictement décroissante sur $]-\infty; -\frac{1}{3}[$ et sur $]-\frac{1}{3}; +\infty[$.

 $f(x) = (1+2x)e^x$ de la forme f = uv, et alors, après calculs, $f'(x) = (3+2x)e^x$.

On trouve alors

x	$-\infty$		$-\frac{3}{2}$		$+\infty$
3+2x		_	Ф	+	
e^x		+		+	
f'(x)		_	Ф	+	
f		V		7	

Exercice 2 On a
$$u_n = -2n^3 + 3n - 1 = -2n^3 \left(1 - \frac{3}{2n^2} + \frac{1}{2n^3}\right)$$

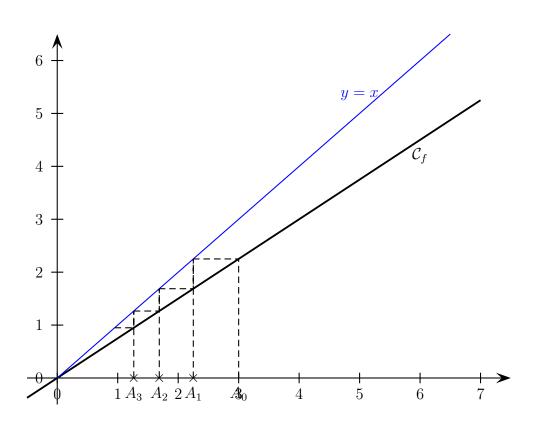
avec $\lim_{n\to+\infty} -2n^3 = -\infty$, et $\lim_{n\to+\infty} 1 - \frac{3}{2n^2} + \frac{1}{2n^3} = 1$, d'où, par produit des limites, $\lim_{n\to+\infty} u_n = -\infty$.

$$v_n = \frac{2n^2 + 1}{3n^2 - n} = \frac{2n^2 \left(1 + \frac{1}{2n^2}\right)}{3n^2 \left(1 - \frac{1}{3n}\right)} = \frac{2}{3} \times \frac{1 + \frac{1}{2n^2}}{1 - \frac{1}{3n}}$$

avec $\lim_{n\to+\infty} 1 + \frac{1}{2n^2} = \lim_{n\to+\infty} 1 - \frac{1}{3n} = 1$, et donc, par produit et quotient des limites $\lim_{n\to+\infty} v_n = \frac{2}{3}$.

Exercice 3

1.



2. Pour tout entier n, $u_{n+1} = f(u_n) = \frac{3}{4}u_n$, ce qui montre que cette suite est géométrique de raison $q = \frac{3}{4}$. Comme -1 < q < 1, on en déduit que $\lim_{n \to +\infty} u_n = 0$.

Exercice 4

a)
$$u_2 = 2 - \frac{1}{u_1} = 2 - \frac{1}{2} = \frac{3}{2}$$
 et $u_3 = 2 - \frac{1}{u_2} = 2 - \frac{2}{3} = \frac{4}{3}$.

b) Montrons par récurrence les propriétés $P(n): u_n = \frac{n+1}{n}$.

Initialisation: pour n = 1, on a $u_1 = 2$ et $\frac{n+1}{n} = \frac{1+1}{1} = 2$, ce qui montre que P(1) est vraie.

Hérédité: Supposons que, pour un certain entier n non nul, P(n) soit vraie, c'est-à-dire: $u_n = \frac{n+1}{n}$ Alors,

$$u_{n+1} = 2 - \frac{1}{u_n} = 2 - \frac{n}{n+1}$$

$$= \frac{2(n+1) - n}{n+1}$$

$$= \frac{n+2}{n+1} = \frac{(n+1) + 1}{n+1}$$

ce qui montre que la propriété P(n+1) est alors aussi vraie.

Conclusion : on vient de montrer, d'après le principe de récurrence, que pour tout entier n non nul, on a $u_n = \frac{n+1}{n}$.

Exercice 5 On a f(x) = 1, 8x(1-x) et $u_{n+1} = f(u_n)$, avec $u_0 = 0, 3$.

a. Pour tout $x \in [0; 1]$, f'(x) = 1, 8(-2x + 1). De plus, $f\left(\frac{1}{2}\right) = 0, 45 \in \left[0; \frac{1}{2}\right]$.

x	0		$\frac{1}{2}$		1
-2x + 1		+	Ф	_	
f'(x)		+	Ф	_	
f	0	7	0,45	\searrow	0

b. <u>Initialisation</u>: Pour n = 0, $u_0 = 0$, 3 et $u_1 = 1, 8 \times 0, 3 (1 - 0, 3) = 0,378$.

On a bien ainsi $0 \leqslant u_0 \leqslant u_1 \leqslant \frac{1}{2}$.

<u>Hérédité</u>: Supposons que pour un entier n, on ait $0 \le u_n \le u_{n+1} \le \frac{1}{2}$.

Comme la fonction f est croissante sur $\left[0; \frac{1}{2}\right]$, on a donc $f(0) \leqslant f\left(u_n\right) \leqslant f\left(u_{n+1}\right) \leqslant f\left(\frac{1}{2}\right)$.

Or,
$$f(0) = 0$$
, $f(u_n) = u_{n+1}$, $f(u_{n+1}) = u_{n+2}$ et $f(\frac{1}{2}) = 0, 45 \le \frac{1}{2}$.

Ainsi, $0 \le u_{n+1} \le u_{n+2} \le 0, 45 \le \frac{1}{2}$, et la propriété est encore vraie au rang (n+1).

Conclusion : D'après le principe de récurrence, pour tout entier $n, 0 \le u_n \le u_{n+1} \le \frac{1}{2}$.

c. La suite (u_n) est donc croissante est majorée par $\frac{1}{2}$. On en déduit qu'elle converge vers une limite l.

- d. La limite l vérifie nécessairement, d'après le théorème du point fixe, $l=1,8l(1-l)\iff 1,8l^2-0,8l=0 \iff l\left(1,8l-0,8\right)=0 \iff l=0$ ou $l=\frac{0,8}{1,8}=\frac{4}{9}$.
 - Or (u_n) est croissante avec $u_0 = 0, 3 > 0$, et donc, pour tout entier $n, u_n \ge 0, 3$.
 - La limite de la suite ne peut donc être que $l = \frac{4}{9}$.