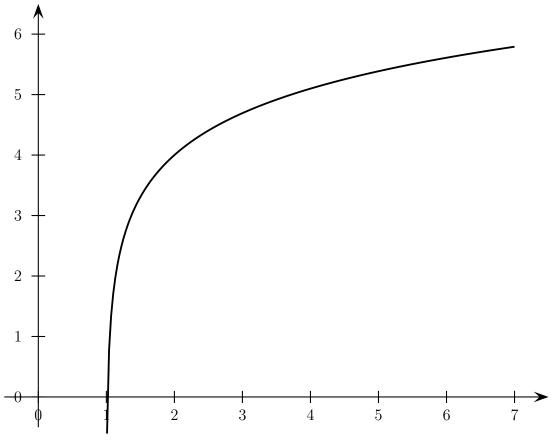
Exercice 1 Calculer la dérivée des fonctions suivantes : $f(x) = 3x^5 - 2x + \frac{6}{x}$ et $g(x) = \frac{-10}{x^2 + 1}$.

Exercice 2 Étudier le sens de variation des fonctions $f(x) = \frac{x+1}{x+3}$ et $f(x) = (1+x)e^x$


Exercice 3 On considère la suite (u_n) définie par $u_0 = 1$, et, pour tout entier n, par $u_{n+1} = 2u_n - 3n + 3$. Montrer par récurrence que, pour tout entier n, on a $u_n = 2^n + 3n$.

Exercice 4 On considère la suite (u_n) définie par son premier terme $u_0 = \frac{1}{2}$ et par la relation de récurrence, pour tout entier naturel n, $u_{n+1} = \frac{2}{3}u_n + 1$. On pose, pour tout entier naturel n, $v_n = u_n - 3$.

- a) Montrer que (v_n) est une suite géométrique, dont on précisera le premier terme et la raison.
- b) Exprimer v_n en fonction de n puis u_n en fonction de n.

Exercice 5 On définit (u_n) par $u_0 = 3$ puis, pour tout entier n, par la relation $u_{n+1} = f(u_n)$ où f est une fonction dont la courbe est représentée sur le graphique suivant.

Construire sur ce graphique les points A_0 , A_1 , A_2 et A_3 , situés sur l'axe des abscisses, et dont les abscisses respectives sont u_0 , u_1 , u_2 et u_3 .

