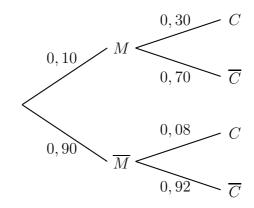
Corrigé du devoir de révision de mathématiques

Exercice 1 Partie A

On peut construire l'arbre pondéré suivant :



- 1. a. $P(M \cap C) = P(M) \times P_M(C) = 0, 1 \times 0, 3 = 0, 03$
 - b. En utilisant l'arbre (ou d'après la formule des probabilités totales) :

$$P(C) = P(M \cap C) + P(\overline{M} \cap C)$$

$$= P(M) \times P_M(C) + P(\overline{M}) \times P_{\overline{M}}(C)$$

$$= 0, 1 \times 0, 3 + 0, 9 \times 0, 08 = 0, 03 + 0, 072 = 0, 102$$

2. On choisit au hasard une victime d'un accident cardiaque.

La probabilité qu'elle présente une malformation cardiaque de type anévrisme est $P_{C}\left(M\right)$:

$$P_C(M) = \frac{P(M \cap C)}{P(C)} = \frac{0.03}{0.102} \approx 0.2941$$

Partie B

1. On peut considérer que, choisir au hasard un échantillon de 400 personnes, peut être assimilé à un tirage avec remise de 400 personnes dans la population totale.

Or la probabilité qu'une personne souffre d'une malformation cardiaque de type anévrisme est P(M) = 0, 1 d'après l'énoncé.

Donc on peut dire que la variable aléatoire X qui donne le nombre de personnes souffrant de cette malformation cardiaque suit une loi binomiale de paramètres n=400 et p=0,1.

- 2. Comme X suit la loi binomiale $\mathcal{B}(400;0,1)$, $P(X=35)=\begin{pmatrix}400\\35\end{pmatrix}0$, $1^{35}(1-0,1)^{400-35}$; le résultat donné par la calculatrice est approximativement 0,0491.
- 3. La probabilité que 30 personnes de ce groupe, au moins, présentent une malformation cardiaque de type anévrisme est $P(X \ge 30)$ qui est égale à $1 P(X < 30) = 1 P(X \le 29)$. D'après la calculatrice, $P(X \le 29) \approx 0,0357$, donc $P(X \ge 30) \approx 0,9643$.

Exercice 2 **Partie A** On considère la fonction g définie sur $[0; +\infty[$ par $g(x) = e^x - x - 1.$

1. g est la somme de la fonction exponentielle et d'une fonction affine et est donc dérivable sur \mathbb{R} , donc sur $[0; +\infty[$, avec, $g'(x) = e^x - 1$.

De plus, la fonction exponentielle est strictement croissante sur IR, lorsque $x \in [0; 1]$, on a $e^x \ge e^0 = 1$, et donc $g'(x) = e^x - 1 \ge 0$.

On a $g'(x) > 0 \iff e^x > 1 \iff x > 0$, car Ainsi, on a le tableau de variation :

x	0		$+\infty$
g'(x)	0	+	
g	0		

- 2. Comme g est strictement croissante sur \mathbb{R}_+ et que g(0)=0, on en déduit que pour tout $x\geqslant 0$, $g(x)\geqslant g(0)=0$.
- 3. On a donc pour tout $x \ge 0$, $g(x) = e^x x 1 \ge 0$, et ainsi, $e^x x \ge 1 > 0$.

Partie B

1. Comme f est strictement croissante sur [0;1], on a $x \in [0;1] \iff 0 \leqslant x \leqslant 1 \iff f(0) \leqslant f(x) \leqslant f(1)$.

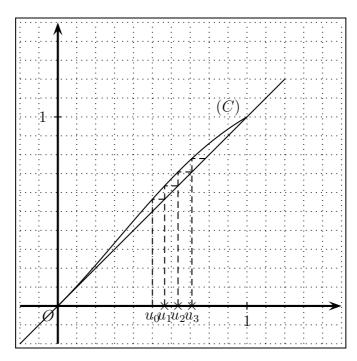
Or $f(0) = \frac{e^0 - 1}{e^0 - 1} = 0$ et $f(1) = \frac{e^1 - 1}{e^1 - 1} = 1$, et on a donc bien ainsi $0 \le f(x) \le 1 \iff f(x) \in [0, 1]$.

- 2. Soit (D) la droite d'équation y = x.
 - a) Pour tout x de [0;1], $f(x) x = \frac{e^x 1}{e^x x} x = \frac{e^x 1 x(e^x x)}{e^x x} = \frac{e^x 1 xe^x + x^2}{e^x x}$. Or $(1-x)g(x) = (1-x)(e^x - x - 1) = e^x - x - 1 - xe^x + x^2 + x = e^x - 1 - xe^x + x^2$. On a donc ainsi bien, pour tout $x \in [0;1]$, $f(x) - x = \frac{(1-x)g(x)}{e^x - x}$.
 - b) On a vue que, pour tout $x \in \mathbb{R}_+$, donc aussi tout $x \in [0;1]$, $g(x) \ge 0$ et $e^x x > 0$. Ainsi, f(x) - x est du même signe que 1 - x, et donc f(x) - x est positif sur [0;1]: la courbe (C) est au dessus de la droite (D) sur [0;1], (C) et (D) se coupant en x = 0 (car g(0) = 0) et en x = 1.
- 3. a) f est de la forme $\frac{u'}{u}$, avec $u(x) = e^x x$. Comme, pour $x \in [0; 1]$, $e^x - x > 0$, d'après la partie A, une primitiver de f est donc $F = \ln u$, soit $F(x) = \ln (e^x - x)$.
 - b) L'aire du domaine est :

$$\mathcal{A} = \int_0^1 (f(x) - x) dx = \int_0^1 f(x) dx - \int_0^1 x dx = \left[F(x) \right]_0^1 - \left[\frac{1}{2} x^2 \right]_0^1$$
$$= \left(F(1) - F(0) \right) - \left(\frac{1}{2} 1^2 - \frac{1}{2} 0^2 \right) = \ln(e - 1) - \frac{1}{2}$$

Partie C

1.



2. Montrons par récurrence que pour tout entier $n, \frac{1}{2} \leqslant u_n \leqslant u_{n+1} \leqslant 1$.

Initialisation: Pour n=0, on a $u_0=\frac{1}{2}$ et $u_1=f(u_0)=f\left(\frac{1}{2}\right)\simeq 0,56$, et donc on a bien $\frac{1}{2}\leqslant u_0\leqslant u_1\leqslant 1$.

 $H\acute{e}r\acute{e}dit\acute{e}:$ Supposons que pour un certain entier n, on ait $\frac{1}{2} \leqslant u_n \leqslant u_{n+1} \leqslant 1$, alors, comme la fonction f est strictement croissante sur [0;1], on a donc $f\left(\frac{1}{2}\right) \leqslant f\left(u_n\right) \leqslant f\left(u_{n+1}\right) \leqslant f(1)$,

soit aussi, comme $f\left(\frac{1}{2}\right) \simeq 0,56 \geqslant \frac{1}{2}, f(1) = 1, \text{ et } f\left(u_n\right) = u_{n+1} \text{ et } f\left(u_{n+1}\right) = u_{n+2},$

$$\frac{1}{2} \leqslant f\left(\frac{1}{2}\right) \leqslant u_{n+1} \leqslant u_{n+2} \leqslant 1,$$

ce qui montre que la propriété est encore vraie au rang n+1.

Conclusion : On vient donc de démontrer d'après le principe de récurrence que pour tout entier $n, \frac{1}{2} \leqslant u_n \leqslant u_{n+1} \leqslant 1$.

3. D'après le résultat précédent, la suite (u_n) est croissante et majorée par 1, elle est donc convergente vers une limite l.

Comme la fonction f est continue sur \mathbb{R}_+ (car elle y est même dérivable), on a alors

$$u_{n+1} = f(u_n) \Longrightarrow \lim_{n \to +\infty} u_{n+1} = \lim_{n \to +\infty} f(u_n) \Longrightarrow l = f(l)$$

La limite l est donc une solution de l'équation f(l) = l (c'est aussi le théorème du point fixe), et il s'agit donc de l'abscisse d'un point d'intersection de (C) et (D), soit l = 0 ou l = 1 d'après la question 2.b) de la partie B.

Or, d'après la question précédente, pour tout entier $n, \frac{1}{2} \leq U_n \leq 1$, et donc (u_n) est minorée par $\frac{1}{2}$ et ne peut pas converger vers l = 0.

Ainsi l = 1, et la suite (u_n) converge donc vers 1.