Exercice 1 QCM - Baccalauréat général, spécialité mathématiques, Métropole 7 juin 2021

1. f est dérivable comme fonction quotient de fonctions dérivables, le dénominateur étant non nul sur l'intervalle]0; $+\infty[$, avec

$$f'(x) = \frac{2e^{2x} \times x - 1 \times e^{2x}}{r^2} = \frac{e^{2x}(2x - 1)}{r^2}$$

Réponse c.

2. Comme sur l'intervalle]0 ; $+\infty$ [, $x^2 > 0$ et $e^{2x} > 0$, le signe de f'(x) est celui de 2x - 1, soit $f'(x) > 0 \iff 2x - 1 > 0 \iff x > \frac{1}{2}$;

et donc $f'(x) < 0 \iff x < \frac{1}{2}$ et f est décroissante sur]0; $\frac{1}{2}[$; et par ailleurs $f'(x) > 0 \iff x > \frac{1}{2}$ et f est croissante sur $]\frac{1}{2}$; $+\infty[$;

On a donc que f admet un minimum en $\frac{1}{2}$.

Réponse c.

3. On a, en posant $X=2x, f(x)=2\times\frac{e^{2x}}{2x}=2\frac{e^X}{X}$, et alors par croissances comparées,

$$\lim_{x \to +\infty} f(x) = \lim_{X \to +\infty} 2 \frac{e^X}{X} = +\infty$$

Réponse a.

4. Sur]0 ; $+\infty$ [, $x^3 > 0$ et $2e^{2x} > 0$, donc le signe de f''(x) est celui du trinôme $2x^2 - 2x + 1$. Le discriminant de ce trinôme est $\Delta = -4 < 0$; il n'admet donc aucune racine, et il est de signe constant, ici positif, sur \mathbb{R} .

On en déduit que $f''(x) \ge 0$ sur $]0; +\infty[$, et donc que la fonction y est convexe.

Réponse b.

5. Réponse a.

Exercice 2 Baccalauréat, terminale générale spécialité mathématiques, 15 mars 2021

1. a) Les abscisses des points d'intersection de C_f et C_g sont les points d'abscisses x solutions de l'équation f(x) = g(x), soit

$$f(x) = g(x) \iff x^2 e^{-x} = e^{-x} \iff (x^2 - 1)e^{-x} = 0$$

Pour tout réel $x, e^{-x} > 0$ donc en particulier $e^{-x} \neq 0$, et alors

$$f(x) = g(x) \iff x^2 - 1 = 0 \iff x = -1 \text{ ou } x = 1$$

Pour x = -1, g(x) = e, et pour x = 1, $g(x) = e^{-1}$.

Les coordonnées des points d'intersection sont donc (-1; e) et $(1; e^{-1})$.

b) Étudier la position relative de C_f et C_g , revient à étudier le signe de la différence φ définie par

$$\varphi(x) = f(x) - g(x) = (x^2 - 1)e^{-x}$$

soit

x	$-\infty$		-1		1		$+\infty$
$x^2 - 1$		+	0	_	0	+	
e^{-x}		+		+		+	
$(x^2-1)e^{-x}$		+	0	_	0	+	

Donc sur les intervalles $]-\infty$; -1[et]1; $+\infty[$, la courbe \mathcal{C}_f est au dessus de la courbe \mathcal{C}_g , et sur l'intervalle]-1; 1[, la courbe \mathcal{C}_f est en dessous de la courbe \mathcal{C}_g ,

2. a) On a $d(x) = (1-x^2)e^{-x}$, soit d = uv avec $u(x) = 1-x^2$ donc u'(x) = -2x, et $v(x) = e^{-x}$ soit $v = e^w$ donc $v' = w'e^w$ et donc $v'(x) = -e^{-x}$. On a alors d' = u'v + uv', soit

$$d'(x) = -2xe^{-x} + (1 - x^2)(-e^{-x})$$

= $e^{-x}(-2x - 1 + x^2)$

b) Dans la dérivée précédente, on a $e^{-x} > 0$ pour tout réel x, et le trinôme du second degré a pour discriminant $\Delta = (-2)^2 + 4 = 8 > 0$ et admet donc deux racines $x_1 = \frac{2 - \sqrt{8}}{2} = 1 - \sqrt{2}$ et $x_2 = 1 + \sqrt{2}$.

x	$-\infty$ -	-1 1	$-\sqrt{2}$	1	$1 + \sqrt{2}$	$\overline{2}$ $+\infty$
e^{-x}	+	+	+	+		+
$x^2 - 2x - 1$	+	+	0 -	_	0	+
d'(x)	+	+	0 –	_	0	+
d		A		*		1

- Sur l'intervalle $[-1; 1-\sqrt{2}[, d'(x) > 0 \text{ donc } d \text{ est strictement croissante.}]$
- Sur l'intervalle $]1-\sqrt{2}; 1], d'(x) < 0$ donc d est strictement décroissante.
- c) D'après la question précédente, la distance d(x) est maximale pour $x_0 = 1 \sqrt{2}$, et vaut alors $d(1 \sqrt{2}) \approx 1,3$
- 3. On étudie la fonction h.

On a alors

La fonction h est dérivable, donc continue ssur \mathbb{R} , avec $h'(x) = -e^{-x} - 1$ donc, comme $e^{-x} > 0 \iff -e^{-x} < 0$, et donc $h'(x) = -e^{-x} - 1 < -1 < 0$ et la fonction h est donc strictement décroissante sur \mathbb{R} .

- $h(-1) = e^1 + 1 2 = e 1 > 0$; comme h est strictement décroissante, h(x) > 0 pour x < -1, donc h ne s'annule pas sur l'intervalle $] \infty$; -1[.
- $h(0) = e^0 2 = -1 < 0$; comme h est strictement décroissante, h(x) < 0 pour x > 0, donc h ne s'annule pas sur l'intervalle [0]; $+\infty[$.
- Sur l'intervalle [-1; 0], la fonction h est continue et strictement décroissante, et on sait que h(-1) > 0 et h(0) < 0; donc d'après le corollaire du théorème des valeurs intermédiaires, ou théorème de la bijection, l'équation h(x) = 0 admet une solution unique.

La droite Δ et la courbe C_g ont donc un unique point d'intersection dont l'abscisse est comprise entre -1 et 0.

Partie 1

- 1. D'après la courbe représentant la fonction dérivée f':
 - la fonction f' est positive sur $]-\infty$; 1 donc la fonction f est croissante sur cet intervalle;
 - la fonction f' est négative sur]1; $+\infty[$ donc la fonction f est décroissante sur cet intervalle.
- 2. D'après la courbe représentant la fonction dérivée f':
 - la fonction f' est décroissante sur $]-\infty$; 0 donc la fonction f est concave sur cet intervalle;
 - la fonction f' est croissante sur]0; $+\infty[$ donc la fonction f est convexe sur cet intervalle.

Partie 2

On admet que la fonction f mentionnée dans la Partie 1 est définie sur IR par : $f(x) = (x+2)e^{-x}$.

1. Pour tout nombre réel x, $f(x) = (x+2)e^{-x} = xe^{-x} + 2e^{-x} = \frac{x}{e^x} + 2e^{-x}$.

Par croissances comparées on a : $\lim_{x\to ++\infty}\frac{e^x}{x}=+\infty$ donc $\lim_{x\to +\infty}\frac{x}{e^x}=0$.

De plus $\lim_{x \to +\infty} e^{-x} = 0$ donc $\lim_{x \to +\infty} f(x) = 0$.

On en déduit que la courbe \mathcal{C} admet la droite d'équation y=0, c'est-à-dire l'axe des abscisses, comme asymptote horizontale en $+\infty$.

- 2. a) $f'(x) = 1 \times e^{-x} + (x+2) \times (-1)e^{-x} = (1-x-2)e^{-x} = (-x-1)e^{-x}$.
 - b) Pour tout $x, e^{-x} > 0$ donc f'(x) est du signe de -x-1; donc f'(x) s'annule et change de signe en x = -1.

 $f(-1) = (-1+2)e^1 = e$; on établit le tableau de variations de f sur ${\rm I\!R}$:

x	$-\infty$ -1 $+\infty$
-x - 1	+ 0 -
f'(x)	+ 0 -
f(x)	$-\infty$

c) Sur l'intervalle [-2; -1], la fonction f est strictement croissante et continue car dérivable sur cetintervalle. f(-2) = 0 < 2 et f(-1) = e > 2 donc, d'après le corollaire du théorème des valeurs intermédiaires (ou théorème de la bijection), l'équation f(x) = 2 admet une solution unique sur l'intervalle [-2; -1].

Avec la calculatrice, on trouve $\alpha \simeq -1, 6$.

- 3. $f''(x) = (-1) \times e^{-x} + (-x-1) \times (-1)e^{-x} = (-1+x+1)e^{-x} = xe^{-x}$ $e^{-x} > 0$ pour tout x, donc f''(x) est du signe de x.
 - Sur] $-\infty$; 0[, f''(x) < 0 donc la fonction f est concave.
 - Sur $[0; +\infty[, f''(x) > 0 \text{ donc la fonction } f \text{ est convexe.}]$
 - En x = 0, la dérivée seconde s'annule et change de signe donc le point A d'abscisse 0 de \mathcal{C} est le point d'inflexion de cette courbe.