Devoir de mathématiques

Exercice 1 Calculer la dérivée de la fonction définie par l'expression : $f(x) = xe^{2x}$

Exercice 2 Calculer les limites : $\lim_{x \to +\infty} (x^3 - 3x^2 - 5)$; $\lim_{x \to -\infty} e^x + 3x^2 - 2$

Exercice 3 Soit (u_n) la suite définie par $u_0 = 1$ et, pour tout entier n, par $u_{n+1} = \frac{1}{2}(u_n + n) + 1$.

- a) Calculer les premiers termes u_1 et u_2 . Donner les résultats sous forme fractionnaire.
- b) Montrer que, pour tout entier $n \ge 2$, on a $u_n > n$.
- c) Déterminer la limite de (u_n) .

Exercice 4 On définit la suite (u_n) par $u_0 = 0, 3$ et, pour tout entier n, par $u_{n+1} = 1, 8u_n (1 - u_n)$.

- a. Etudier les variations de la fonction $f: x \mapsto 1, 8x(1-x)$ sur [0;1] et montrer que $f\left(\frac{1}{2}\right) \in \left[0;\frac{1}{2}\right]$.
- b. Démontrer par récurrence que, pour tout entier $n, 0 \le u_n \le u_{n+1} \le \frac{1}{2}$.
- c. En déduire que la suite (u_n) converge.
- d. Déterminer la limite de la suite (u_n) .