Devoir de mathématiques

Exercice 1 Résoudre les équations : (E_1) : $3^x = 5$ et (E_2) : $\ln(x+2) + \ln(x) = 3$

Exercice 2 (u_n) est une suite géométrique de raison $\frac{1}{3}$ et de premier terme $u_0 = 2$. Déterminer les entiers n pour lesquels on a $u_n > 0, 01$.

Exercice 3 Déterminer les limites $\lim_{x \to +\infty} \frac{3 \ln(x) + 1}{\ln(x) - 10}$ et $\lim_{x \to +\infty} \ln(x) - x + 10$.

Exercice 4 On considère la fonction f définie sur $]0; +\infty[$ par $f(x) = x \ln(x)$, et on note \mathcal{C} sa courbe représentative.

- 1. Montrer que la fonction f est convexe sur $]0; +\infty[$.
- 2. Donner l'équation de la tangente à $\mathcal C$ au point d'abscisse 1.
- 3. Montrer que, pour tout x > 0, on a $x \ln(x) \ge x 1$.

Devoir de mathématiques

Exercice 1 Résoudre les équations : (E_1) : $3^x = 5$ et (E_2) : $\ln(x+2) + \ln(x) = 3$

Exercice 2 (u_n) est une suite géométrique de raison $\frac{1}{3}$ et de premier terme $u_0 = 2$. Déterminer les entiers n pour lesquels on a $u_n > 0, 01$.

Exercice 3 Déterminer les limites $\lim_{x \to +\infty} \frac{3 \ln(x) + 1}{\ln(x) - 10}$ et $\lim_{x \to +\infty} \ln(x) - x + 10$.

Exercice 4 On considère la fonction f définie sur $]0; +\infty[$ par $f(x) = x \ln(x)$, et on note \mathcal{C} sa courbe représentative.

- 1. Montrer que la fonction f est convexe sur $]0; +\infty[$.
- 2. Donner l'équation de la tangente à $\mathcal C$ au point d'abscisse 1.
- 3. Montrer que, pour tout x > 0, on a $x \ln(x) \ge x 1$.

Devoir de mathématiques

Exercice 1 Résoudre les équations : (E_1) : $3^x = 5$ et (E_2) : $\ln(x+2) + \ln(x) = 3$

Exercice 2 (u_n) est une suite géométrique de raison $\frac{1}{3}$ et de premier terme $u_0 = 2$. Déterminer les entiers n pour lesquels on a $u_n > 0, 01$.

Exercice 3 Déterminer les limites $\lim_{x \to +\infty} \frac{3 \ln(x) + 1}{\ln(x) - 10}$ et $\lim_{x \to +\infty} \ln(x) - x + 10$.

Exercice 4 On considère la fonction f définie sur $]0; +\infty[$ par $f(x) = x \ln(x)$, et on note \mathcal{C} sa courbe représentative.

- 1. Montrer que la fonction f est convexe sur $]0; +\infty[$.
- 2. Donner l'équation de la tangente à ${\mathcal C}$ au point d'abscisse 1.
- 3. Montrer que, pour tout x > 0, on a $x \ln(x) \ge x 1$.