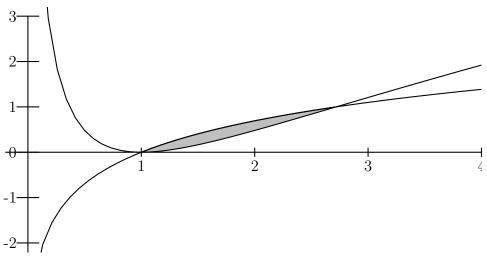
Devoir de mathématiques

Exercice 1 Calculer les intégrales : $I_1 = \int_{-2}^2 3x^5 dx$, $I_2 = \int_0^1 \frac{3}{(2x+1)^2} dx$ et, en utilisant une intégration par parties, $I_3 = \int_0^1 (2x+1)e^{2x} dx$

Exercice 2 Les courbes C et C' données ci-dessous représentent respectivement les fonctions f et g définies sur l'intervalle $]0; +\infty[$ par $f(x) = \ln x$ et $g(x) = (\ln x)^2$.



1. On cherche à déterminer l'aire A (en unités d'aire) de la partie grisée.

On note $I = \int_{1}^{e} \ln x \, dx$ et $J = \int_{1}^{e} (\ln x)^{2} \, dx$.

- a) Vérifier que la fonction F définie sur l'intervalle $]0; +\infty[$ par $F(x) = x \ln x x$ est une primitive de la fonction logarithme népérien. En déduire I.
- b) Démontrer à l'aide d'une intégration par partie que J=e-2I.
- c) Donner la valeur de A.
- 2. Pour x appartenant à l'intervalle [1;e], on note M le point de la courbe C d'abscisse x et N le point de la courbe C' de même abscisse.

Pour quelle valeur de x la distance MN est-elle maxiale? Calculer la valeur maximale de MN.

Exercice 3 Pour tout entier naturel n supérieur ou égal à 1, on désigne par f_n la fonction définie sur \mathbb{R} par :

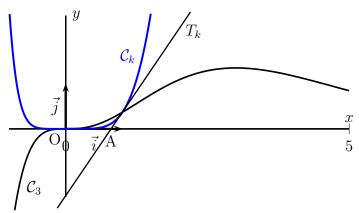
$$f_n(x) = x^n e^{-x}$$

On note C_n sa courbe représentative dans un repère orthogonal $(O; \vec{i}, \vec{j})$ du plan.

PARTIE A

Sur le graphique ci-dessous, on a représenté une courbe C_k où k est un entier naturel non nul, sa tangente T_k au point d'abscisse 1 et la courbe C_3 .

La droite T_k coupe l'axe des abscisses au point A de coordonnées $\left(\frac{4}{5}; 0\right)$.



- 1. a) Étudier les variations de la fonction f_1 et dresser le tableau de variations de f_1 .
 - b) À l'aide du graphique, justifier que k est un entier supérieur ou égal à 2.
- 2. a) Démontrer que pour $n \ge 1$, toutes les courbes C_n passent par le point O et un autre point dont on donnera les coordonnées.
 - b) Vérifier que pour tout entier naturel n supérieur ou égal à 2, et pour tout réel x,

$$f'_n(x) = x^{n-1}(n-x)e^{-x}.$$

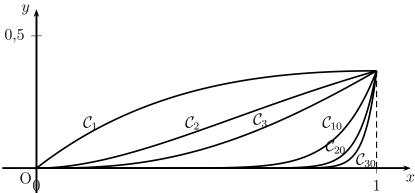
- 3. Sur le graphique, la fonction f_3 semble admettre un maximum atteint pour x=3. Valider cette conjecture à l'aide d'une démonstration.
- 4. a) Démontrer que la droite T_k coupe l'axe des abscisses au point de coordonnées $\left(\frac{k-2}{k-1}; 0\right)$.
 - b) En déduire, à l'aide des données de l'énoncé, la valeur de l'entier k.

PARTIE B

On désigne par (I_n) la suite définie pour tout entier n supérieur ou égal à 1 par

$$I_n = \int_0^1 x^n e^{-x} \, dx$$

- 1. Calculer I_1 .
- 2. Sur le graphique ci-dessous, on a représenté les portions des courbes C_1 , C_2 , C_3 , C_{10} , C_{20} , C_{30} comprises dans la bande définie par $0 \le x \le 1$.



- a) Formuler une conjecture sur le sens de variation de la suite (I_n) en décrivant sa démarche.
- b) Démontrer cette conjecture.
- c) En déduire que la suite (I_n) est convergente.
- d) Déterminer $\lim_{n\to+\infty} (I_n)$.