Corrigé du devoir de mathématiques

Exercice 1

$$I_1 = \int_{-2}^{2} 3x^5 dx = \left[\frac{3}{6}x^6\right]_{-2}^{2} = \frac{1}{2} \left(2^6 - (-2)^6\right) = 0$$

$$I_2 = \int_{0}^{1} \frac{3}{(2x+1)^2} dx = \left[-\frac{3}{2} \times \frac{1}{2x+1}\right]_{0}^{1} = -\frac{3}{2} \left(\frac{1}{3} - 1\right) = 1$$

On intégre par parties en posant u=2x+1 donc u'=2, et $v'=e^{2x}$ donc $v=\frac{1}{2}e^{2x}$, et alors

$$I_3 = \int_0^1 (2x+1)e^{2x} dx$$

$$= \left[(2x+1)\frac{1}{2}e^{2x} \right]_0^1 - \int_0^1 2 \times \frac{1}{2}e^{2x} dx$$

$$= \frac{3}{2}e^2 - \frac{1}{2}e^0 - \left[\frac{1}{2}e^{2x} \right]_0^1$$

$$= \frac{3}{2}e^2 - \frac{1}{2} - \left(\frac{1}{2}e^2 - \frac{1}{2} \right) = e^2$$

Exercice 2 Bac juin 2008

1. a) On dérive : F = uv - u avec u(x) = x donc u'(x) = 1 et $v(x) = \ln x$ donc $v'(x) = \frac{1}{x}$, et alors, F' = u'v - uv' - u', soit $F'(x) = \ln x - x \times \frac{1}{x} - 1 = \ln x = f(x)$ ce qui montre que F est bien une primtive de f.

On en déduit

$$I = \int_{1}^{e} \ln x \, dx = \left[F(x) \right]_{1}^{e} = F(e) - F(1)$$
$$= (e \ln e - e) - (1 \ln 1 - 1) = 1$$

b) On pose $u = \ln x$ donc $u' = \frac{1}{x}$ et $v' = \ln x$ donc $v = x \ln x - x$ et et alors, en intégrant par parties,

$$J = \left[\ln x \left(x \ln x - x\right)\right]_{1}^{e} - \int_{1}^{e} \frac{1}{x} \left(x \ln x - x\right)$$

$$= 0 - \int_{1}^{e} (\ln x - 1) dx$$

$$= -\int_{1}^{e} \ln x dx + \int_{1}^{e} 1 dx$$

$$= -I + e - 1 = e - 2I$$

car I = 1.

c) On en déduit la valeur de A :

$$A = \int_{1}^{e} (f(x) - g(x)) dx$$
$$= \int_{1}^{e} f(x) dx - \int_{1}^{e} g(x) dx$$
$$= I - J = 1 - (e - 2I)$$
$$= 1 - (e - 2) = 3 - e$$

2. Pour $x \in [1; e]$, on a

$$MN = d(x) = f(x) - g(x)$$
$$= \ln x - (\ln x)^{2}$$

Pour trouver le maximum de cette fonction, il suffit de connaître ses variations.

On a

$$d'(x) = \frac{1}{x} - 2\frac{1}{x}\ln x = \frac{1}{x}(1 - 2\ln x)$$

avec $1 - 2 \ln x > 0 \iff \ln x < 1/2 \iff x < e^{1/2} = \sqrt{e}$ et donc

x	1		\sqrt{e}		e
1/x		+		+	
$1-2\ln x$		+	Ф	_	
d'(x)		+	Ф	_	
d		7	$d\left(\sqrt{e}\right)$	¥	

La distance est donc maximale en $x = \sqrt{e}$ et cette distance maximale est

$$d(\sqrt{e}) = \ln \sqrt{e} - (\ln \sqrt{e})^2 = \frac{1}{2} - (\frac{1}{2})^2 = \frac{1}{4}$$

Exercice 3 Bac général, série S, 2011 Partie A

- 1. a. f_1 est le produit des fonctions $x \mapsto x$ et $x \mapsto e^{-x}$ qui sont dérivables sur \mathbb{R} . f_1 est donc dérivable sur \mathbb{R} avec, pour tout x réel, $f'_1(x) = e^{-x}(1-x)$.
 - b. D'après le graphique, on ne peut pas avoir k=1, car \mathcal{C}_k n'est pas en accord avec le tableau de variation de

Comme k est un entier naturel non nul, on doit nécessaire ent avoir $k \ge 2$.

x	$-\infty$	1		$+\infty$
e^{-x}	+		+	
1-x	+	Ф	_	
$f_1'(x)$	+	Ф	_	
		1_		
f_1		• e	\	
	$-\infty$			0

2. a. Pour $n \ge 1$, $f_n(0) = 0^n e^{-0} = 0$, donc le point O appartient à toutes les courbes \mathcal{C}_n .

Soit de plus $I(x;y) \in \mathcal{C}_1 \cap \mathcal{C}_2$, alors $y = f_1(x) = x^{-x}$ et $y = f_2(x) = x^2 e^{-x}$.

On doit donc avoir, $y = xe^{-x} = x^2e^{-x} \iff xe^{-x}(1-x) = 0 \iff x(1-x) = 0 \text{ car } e^{-x} \neq 0 \text{ pour tout } x$ réel, et donc, x = 0 ou x = 1.

x=0 correspond au point O, tandis que pour $x=1, y=f_1(x)=e^{-1}=\frac{1}{e}$.

On vérifie alors que, pour tout entier n, $f_n(1) = 1^n e^{-1} = \frac{1}{e}$, et donc que pour tout entier n, $I\left(1; \frac{1}{e}\right) \in \mathcal{C}_n$

b. f_n est le produit de la fonction polynôme $x \mapsto x^n$ et de l'exponentielle $x \mapsto e^{-x}$ qui sont dérivables sur IR. f_n est donc dérivable sur IR, avec, $f'_n(x) = nx^{n-1}e^{-x} - x^ne^{-x} = x^{n-1}e^{-x}(n-x).$

3. D'après ce qui précède, $f_3'(x) = x^2(3-x)e^{-x}$, et on a le tableau de variation suivant.

On en déduit en particulier que f_3 atteint un maximum en x = 3.

x	$-\infty$	3	$+\infty$
$f_3'(x)$	+	Ф	_
f_3		$\left(\frac{3}{e}\right)^3$	/

4. a. La droite T_k est la tangente à C_k en $x=1/T_k$ a pour équation :

$$y = f'_k(1)(x-1) + f_k(1) = (k-1)e^{-1}(x-1) + 1^k e^{-1} = \frac{k-1}{e}(x-1) + \frac{1}{e}$$

 T_k coupe l'axe des abscisses pour y=0, soit $\frac{k-1}{e}(x-1)+\frac{1}{e}=0 \iff x=\frac{k-2}{k-1}$, d'où les coordonnées du point d'intersection recherché $\left(\frac{k-2}{k-1};0\right)$.

b. D'après l'énoncé, ce point d'intersection est $A\left(\frac{4}{5};0\right)$, donc, $\frac{k-2}{k-1}=\frac{4}{5}\iff k=6$.

Partie B

- 1. En intégrant par parties, $I_1 = \int_0^1 x e^{-x} dx = \left[-x e^{-x} \right]_0^1 + \int_0^1 e^{-x} dx = -e^{-1} + \left[-e^{-x} \right]_0^1 = -\frac{2}{e} + 1$
- 2. a. I_n est l'aire comprise entre la courbe C_n , l'axe des abscisses, et les droites d'équation x = 0 et x = 1. Graphiquement ces aires sont de plus en plus petites pour les courbes C_1 à C_{30} . On peut donc conjecturer que la suite (I_n) est décroissante.
 - b. $I_{n+1} I_n = \int_0^1 x^{n+1} e^{-x} dx \int_0^1 x^n e^{-x} dx = \int_0^1 \left(x^{n+1} e^{-x} x^n e^{-x} \right) dx = \int_0^1 x^n (x-1) e^{-x} dx$ or, pour tout $x \in [0;1], x-1 \le 0, x^n \ge 0$, et $e^{-x} \ge 0$, d'où, $x^n (x-1) e^{-x} \le 0$, et donc, $\int_0^1 x^n (x-1) e^{-x} dx \le 0$, c'est-à-dire $I_{n+1} - I_n \le 0 \iff I_{n+1} \le I_n$: la suite (I_n) est décroissante.
 - c. Pour $x \in [0; 1]$, $x^n e^{-x} \ge 0$, d'où, $I_n = \int_0^1 x^n e^{-x} dx \ge 0$. Ainsi, (I_n) est une suite décroissante et minorée par $0: (I_n)$ est donc convergente.
 - d. Comme, pour tout $x \in [0; 1]$, $0 < e^{-x} \le 1$, et $x^n \ge 0$, $0 \le x^n e^{-x} \le x^n$ d'où, $\int_0^1 0 \, dx \le \int_0^1 x^n e^{-x} \, dx \le \int_0^1 x^n \, dx$, soit donc, $0 \le I_n \le \int_0^1 x^n \, dx$. Or, $\int_0^1 x^n \, dx = \left[\frac{x^{n+1}}{n+1}\right]_0^1 = \frac{1}{n+1}$, et ainsi, pour tout entier $n, 0 \le I_n \le \frac{1}{n+1}$.

Comme $\lim_{n\to+\infty}\frac{1}{n+1}=0$, on en déduit, d'après le théorème des gendarmes, que $\lim_{n\to+\infty}I_n=0$.