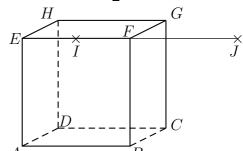
Correction du devoir de mathématiques

Exercice 1



- 1. a) Par lecture graphique, $I\left(\frac{1}{2};0;1\right)$ et $J\left(2;0;1\right)$.
 - b) On en déduit $\overrightarrow{DJ}(2;-1;1)$, $\overrightarrow{BI}(-\frac{1}{2};0;1)$ et $\overrightarrow{BG}(0;1;1)$.
 - c) \overrightarrow{DJ} est normal au plan (BGI) si et seulement si il est orthogonal à deux vecteurs non colinéaires du plan, par exemple \overrightarrow{BG} et \overrightarrow{BI} , ce qui est bien le cas car :

$$\overrightarrow{DJ} \cdot \overrightarrow{BG} = 2 \times 0 + (-1) \times 1 + 1 \times 1 = 0$$

et

$$\overrightarrow{DJ} \cdot \overrightarrow{BI} = 2 \times \left(-\frac{1}{2} \right) + (-1) \times 0 + 1 \times 1 = 0$$

d) Un vecteur normal au plan (BGI) est donc $\overrightarrow{DJ}(2;-1;1)$ et donc ce plan a une équation cartésienne de la forme 2x - y + z + d = 0.

De plus B(1;0;0) appartient à ce plan, d'où $2 \times 1 - 0 + 0 + d = 0 \iff d = -2$.

Une équation cartésienne du plan (BGI) est donc bien 2x - y + z - 2 = 0.

- 2. On note d la droite passant par F et orthogonale au plan (BGI).
 - a) Comme la droite d est orthogonale au plan (BGI) et que \overrightarrow{DJ} est aussi orthogonal à ce plan, on en déduit que \overrightarrow{DJ} est un vecteur directeur de d. On a donc une representation paramétrique, avec F(1;0;1):

$$d: \left\{ \begin{array}{lll} x & = & 1+2t \\ y & = & -t \\ z & = & 1+t \end{array} \right., t \in \mathbb{R}$$

b) Comme d est orthogonal à (BGI), leur intersection est donc un point. Il reste donc simplement à vérifier que cette intersection est le point L, c'est-à-dire que $L \in d$ et $L \in (BGI)$.

Avec l'équation cartésienne de (BGI), $2 \times \frac{2}{3} - \frac{1}{6} + \frac{5}{6} - 2 = \frac{8}{6} + \frac{4}{6} - \frac{12}{6} = 0$ et donc $L \in (BGI)$. Avec la représentation prarémtrique de d, on cherche $t \in \mathbb{R}$ tel que

$$d: \begin{cases} \frac{2}{3} = 1 + 2t \\ \frac{1}{6} = -t \iff t = -\frac{1}{6} \\ \frac{5}{6} = 1 + t \end{cases}$$

et donc $L \in d$.

Finalement L est le point d'intersection de d et (BGI).

3. a) D'après tout ce qui précède, une hauteur est FL associée à la base BGI. On peut aussi considérer la base FGI associée à la hauteur FB, qui donne le volume

$$V = \frac{1}{3} \times \left(\frac{1}{2}FI \times FG\right) \times FB$$
$$= \frac{1}{3} \times \left(\frac{1}{2} \times \frac{1}{2} \times 1\right) \times 1 = \frac{1}{12}$$

b) En utilisant la hauteur FL et la base BGI d'aire \mathcal{B} , on a

$$V = \frac{1}{3} \times \mathcal{B} \times FL$$

où

$$FL = \sqrt{\left(\frac{2}{3} - 1\right)^2 + \left(\frac{1}{6} - 0\right)^2 + \left(\frac{5}{6} - 1\right)^2} = \sqrt{\frac{1}{6}} = \frac{1}{\sqrt{6}}$$

On en déduit que

$$V = \frac{1}{12} = \frac{1}{3} \times \mathcal{B} \times \frac{1}{\sqrt{6}}$$

d'où l'aire du triangle BGI.

$$\mathcal{B} = \frac{\sqrt{6}}{4}$$

Exercice 2 Soit f la fonction définie sur IR par l'expression $f(x) = (3-x)e^x + 1$.

1. On a f = uv + 1, avec u(x) = 3 - x donc u'(x) = -1, et $v(x) = e^x$ donc $v'(x) = e^x$. On trouve donc f' = u'v + uv' + 0, soit $f'(x) = -e^x + (3 - x)e^x = (2 - x)e^x$.

On recommence: f' = uv, avec u(x) = 2 - x donc u'(x) = -1, et $v(x) = e^x$ donc $v'(x) = e^x$. On trouve donc (f')' = f'' = u'v + uv', soit $f''(x) = -e^x + (2 - x)e^x = (1 - x)e^x$.

2. Les variations de f sont données par le signe de sa dérivée f':

x	$-\infty$		2		$+\infty$
2-x		+	Ф	_	
e^x		+		+	
f'(x)		+	ф	_	
			$e^2 + 1$		
f		7		\searrow	

3. f est continue sur IR, donc aussi sur [3;4] où elle est strictement décroissante, avec de plus f(3) = 1 > 0 et $f(4) = -e^4 + 1 < 0$.

D'après le théorème des valeurs intermédiaires (ou plus précisément ici de la bijection), l'équation f(x) = 0 admet donc une unique solution $\alpha \in [3; 4]$.

- 4. a) $T: y = f'(3)(x-3) + f(3) = -e^3(x-3) + 1$,
 - b) T coupe l'axe des abscisses à l'abscisse x telle que $y=0 \iff -e^3(x-3)+1=0 \iff x=3+e^{-3}$
 - c) La convexité de f est donnée par le signe de sa dérivée seconde :

x	$-\infty$		1		$+\infty$
1-x		+	0	_	
e^x		+		+	
f''(x)		+	Ф	_	

Ainsi, f est convexe sur $]-\infty;1[$ et concave sur $]1;+\infty[$.

d) On a $\alpha \in [3; 4]$, or f est concave sur cet intervalle, et donc f y est au-dessous de ses tangentes. En particulier, le point $(\alpha; f(\alpha))$ de la courbe (avec $f(\alpha) = 0$) est en-dessous du point de la tangente T au point d'abscisse α :

$$0 = f(\alpha) \leqslant -e^3(\alpha - 3) + 1$$

$$\iff \alpha \leqslant \frac{1}{e^3} + 3 \simeq 3,0498 < 3,05$$

