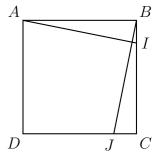
Devoir maison de mathématiques

Géométrie plane vectorielle et analytique

Exercice 1 Soit ABCD un carré, et I et J les points tels que $\overrightarrow{BI} = \frac{1}{5}\overrightarrow{BC}$ et $\overrightarrow{CJ} = \frac{1}{5}\overrightarrow{CD}$.



Donner dans le repère orthonormal $(D; \overrightarrow{DC}, \overrightarrow{DA})$ les coordonnées de tous les points de la figure.

Démontrer alors que les vecteurs \overrightarrow{AI} et \overrightarrow{BJ} sont orthogonaux.

Exercice 2 Dans un RON, on considère les points A(1;1), B(-1;2) et C(-3;0). Donner une valeur de \widehat{ABC} à 0,1 degré près.

Exercice 3 ABC est un triangle tel que A(3; -2), B(0; -1) et C(1; 3).

- a) Déterminer une équation de la médiatrice du segment [AB].
- b) Déterminer une équation de la hauteur issue de C dans le triangle ABC.

Exercice 4 Dans un RON, on considère les points A(-3;0), B(3;-1) et C(1;5).

- a) Déterminer une équation de la droite d_1 perpendiculaire à (AB) et passant par C.
- b) Déterminer une équation de la droite d_2 parallèle à (AB) et passant par C.

Analyse - Asymptote oblique

Exercice 5 Démontrer que, pour tout réel x > 0, on a $e^x > x$.

En déduire la limite de e^x quand x tend vers $+\infty$.

En déduire alors aussi la limite de e^x lorsque x tend vers $-\infty$.

Définitions On dit que la droite Δ d'équation y = ax + b est asymptote oblique en $+\infty$ à \mathcal{C}_f , courbe représentative de la fonction f, lorsque $\lim_{x \to +\infty} \left(f(x) - (ax + b) \right) = 0$.

Déterminer la position relative des courbes C_f et Δ signifie déterminer quelle courbe est au-dessous ou au-dessus de l'autre.

La position relative est donnée par l'étude du signe de la différence d(x) = f(x) - (ax + b).

Exercice 6 Soit la fonction f définie sur $\mathbb{R} \setminus \{-2\}$ par l'expression $f(x) = \frac{-x^2 + x + 3}{x + 2}$.

Montrer que la droite Δ d'équation y=-x+3 est asymptote oblique à la courbe représentative C_f de f en $+\infty$.

Étudier la position relative de C_f et Δ .

Exercice 7 On considère la fonction f définie sur $\mathbb{R} \setminus \{-2\}$ par $f(x) = \frac{2x^2 + 3x + 3}{x + 2}$, et on note C_f sa courbe représentative dans un repère orthogonal du plan.

- 1. Déterminer un nombre réel a tel que, pour tout réel x, $f(x) = 2x 1 + \frac{a}{x+2}$.
- 2. Montrer que la droite Δ d'équation y = 2x 1 est asymptote oblique à C_f en $-\infty$ et $+\infty$.
- 3. Déterminer la position relative de C_f et Δ .

4. Représenter graphiquement ces résultats.

Exercice 8

Partie I. Soit g la fonction définie sur \mathbb{R} par : $g(x) = x^3 - 3x - 4$.

- 1. Etudier le sens de variation de g sur \mathbb{R} .
- 2. Démontrer que l'équation g(x) = 0 admet dans IR une solution unique que l'on notera α . Donner une valeur approchée de α à 10^{-2} près.
- 3. Déterminer le signe de g sur \mathbb{R} .

Partie II. Soit f la fonction définie sur $\mathbb{R} \setminus \{-1; 1\}$ par : $f(x) = \frac{x^3 + 2x^2}{x^2 - 1}$. On note C_f sa courbe représentative dans un repère orthonormal.

- 1. Etudier les limites de f aux bornes de ses intervalles de définition. En déduire l'existence de deux asymptotes verticales dont on donnera les équations.
- 2. Calculer la dérivée de f sur $\mathbb{R} \setminus \{-1, 1\}$ et déterminer son signe.
- 3. Dresser le tableau de variation de f.
- 4. Montrer que pour tout x de $\mathbb{R} \setminus \{-1, 1\}$, $f(x) = x + 2 + \frac{x+2}{x^2 1}$.
- 5. Montrer que la droite Δ d'équation y = x + 2 est une asymptote oblique à C_f en $-\infty$ et $+\infty$.
- 6. Etudier la position relative de C_f et Δ .
- 7. Déterminer les abscisses des points de \mathcal{C}_f admettant une tangente parallèle à Δ .