Corrigé

Exercice 1

a. Pour tout nombre entier naturel n, $v_{n+1} = u_{n+1} - 6 = \frac{1}{3}u_{n+1} - 2 = \frac{1}{3}(u_{n+1} - 6) = \frac{1}{3}v_n$. On en déduit que (v_n) est géométrique de raison $q = \frac{1}{3}$ et de premier terme $v_0 = u_0 - 6 = -5$.

b. D'après la question précédente, pour tout entier n, $v_n = v_0 q^n = -5 \left(\frac{1}{3}\right)^n$, et donc que, pour tout entier n, $u_n = v_n + 6 = -5 \left(\frac{1}{3}\right)^n + 6$.

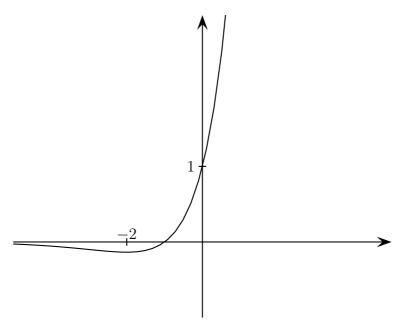
c. Comme $0 < \frac{1}{3} < 1$, $\lim_{n \to +\infty} \left(\frac{1}{3}\right)^n = 0$, et donc, $\lim_{n \to +\infty} (u_n) = 6$.

Exercice 2

a) On a un produit f = uv avec u(x) = 1 + x donc u'(x) = 1, et $v(x) = e^x$ donc $v'(x) = e^x$. Ainsi, f' = u'v + uv', soit $f'(x) = e^x + (1+x)e^x = (2+x)e^x$. Le sens de variation est alors donné par le signe de la dérivée.

x	$-\infty$		-2		$+\infty$
2+x		_	Ф	+	
e^x		+		+	
f'(x)		+	Ф	_	
F		¥	$-e^{-2}$	7	

b)



c) La convexité est donnée par le signe de la dérivée seconde. On dérive donc f'. On a $f''(x) = e^x + (2+x)e^x = (3+x)e^x$ et donc

x	$-\infty$		-3		$+\infty$
3+x		_	Ф	+	
e^x		+		+	
f" (x)		+	0	_	

Ainsi, f est concave sur $]-\infty;-3]$, tandis qu'elle est convexe sur $[-3;+\infty[$. Enfin, le point d'abscisse -3 est le seul point d'inflexion de la courbe de f.