Corrigé

Exercice 1 Tout d'abord, f est définie pour des valeurs strictement positives de x, soit $\mathcal{D}_f = \mathbb{R}_+^*$. Pour tout x > 0, $f'(x) = \frac{1}{x^2} - \frac{2}{x} = \frac{1 - 2x}{x^2}$.

x	0		$\frac{1}{2}$	$+\infty$
1-2x		+	Ф	_
x^2		+		+
f'(x)		_	Ф	+
g	$-\infty$		$1 + 2\ln(2$	(2)

Limite en 0: $f(x) = 1 - \frac{1}{x}(1 + 2x\ln(x))$, avec, par croissances comparées, $\lim_{x\to 0} x \ln(x) = 0$, donc $\lim_{x\to 0^+} \frac{1}{x}(1 + 2x\ln(x)) = +\infty$, et alors, $\lim_{x\to 0^+} f(x) = -\infty$.

Limite en $+\infty$: $\lim_{x\to +\infty} 1 - \frac{1}{x} = 1$ et $\lim_{x\to +\infty} \ln(x) = +\infty$. Ainsi, par addition des limites, $\lim_{x\to +\infty} f(x) = -\infty$.

Exercice 2 On considère la suite (u_n) définie par son premier terme $u_0 = 1$ et par la relation, pour tout entier naturel n, $u_{n+1} = \frac{2}{3}u_n + 1$.

- 1. $u_1 = \frac{2}{3}u_0 + 1 = \frac{5}{3}$ et $u_2 = \frac{2}{3}u_1 + 1 = \frac{19}{9}$.
- 2. On a $u_1 u_0 = \frac{2}{3} \neq u_2 u_1 = \frac{4}{9}$ donc (u_n) n'est pas arithmétique. De même, $\frac{u_1}{u_0} = \frac{5}{3} \neq \frac{u_2}{u_1} = \frac{19}{15}$ donc (u_n) n'est pas géométrique non plus.
- 3. On pose, pour tout entier naturel n, $v_n = u_n 3$.
 - a) Pour tout entier n, $v_{n+1} = u_{n+1} 3 = \frac{2}{3}u_n + 1 3 = \frac{2}{3}u_n 2 = \frac{2}{3}(u_n 3) = \frac{2}{3}v_n$. Ainsi, (v_n) est une suite géométrique de raison $q = \frac{2}{3}$ et de premier terme $v_0 = u_0 - 3 = -2$.
 - b) On en déduit que, pour tout entier n, $v_n = v_0 q^n = -2\left(\frac{2}{3}\right)^n$.
 - c) On obtient alors, $v_n = u_n 3 \iff u_n = v_n + 3 = -2\left(\frac{2}{3}\right)^n + 3.$