Oral de Bac - Intersection et distance entre un plan (équation cartésienne) et une droite (représentée paramétriquement)

Exercice corrigé - Spécialité maths, terminale générale

Dans l'espace muni du repère orthonormal $\left( O,\vec{i},\vec{j},\vec{k}\rp$ on considère le plan $P$ d'équation $x+y+z-3=0$ ainsi que le point $M(2;-3;1)$.
  1. Le point $M$ est-il dans le plan $P$ ?
  2. Donner une représentation paramétrique de la droite $D$ passant par $M$ et orthogonale à $P$.
  3. Déterminer les coordonnées du point $H$ intersection de $D$ et $P$.
  4. En déduire la distance du point $M$ au plan $P$.

Correction


Tag:Géométrie dans l'espace

Autres sujets au hasard: Lancer de dés


Voir aussi:
LongPage: h2: 1 - h3: 0