Bac 2021 - Arbre pondéré, probabilités conditionnelles et loi binomiale

Exercice corrigé - Spécialité maths, terminale générale

Dans une école de statistique, après étude des dossiers des candidats, le recrutement se fait de deux façons :
  • 10 % des candidats sont sélectionnés sur dossier. Ces candidats doivent ensuite passer un oral à l'issue duquel 60 % d'entre eux sont finalement admis à l'école.
  • Les candidats n'ayant pas été sélectionnés sur dossier passent une épreuve écrite à l'issue de laquelle 20 % d'entre eux sont admis à l'école.
Partie 1

On choisit au hasard un candidat à ce concours de recrutement. On notera:
  • $D$ l'évènement « le candidat a été sélectionné sur dossier »;
  • $A$ l'évènement « le candidat a été admis à l'école »;
  • $\overline{D}$ et $\overline{A}$ les évènements contraires des évènements $D$ et $A$ respectivement.

  1. Traduire la situation par un arbre pondéré.
  2. Calculer la probabilité que le candidat soit sélectionné sur dossier et admis à l'école.
  3. Montrer que la probabilité de l'évènement $A$ est égale à $0,24$.
  4. On choisit au hasard un candidat admis à l'école. Quelle est la probabilité que son dossier n'ait pas été sélectionné?

Partie 2
  1. On admet que la probabilité pour un candidat d'être admis à l'école est égale à $0,24$.
    On considère un échantillon de sept candidats choisis au hasard, en assimilant ce choix à un tirage au sort avec remise. On désigne par $X$ la variable aléatoire dénombrant les candidats admis à l'école parmi les sept tirés au sort.
    1. On admet que la variable aléatoire $X$ suit une loi binomiale. Quels sont les paramètres de cette loi?
    2. Calculer la probabilité qu'un seul des sept candidats tirés au sort soit admis à l'école. On donnera une réponse arrondie au centième.
    3. Calculer la probabilité qu'au moins deux des sept candidats tirés au sort soient admis à cette école. On donnera une réponse arrondie au centième.
  2. Un lycée présente $n$ candidats au recrutement dans cette école, où $n$ est un entier naturel non nul.
    On admet que la probabilité pour un candidat quelconque du lycée d'être admis à l'école est égale à $0,24$ et que les résultats des candidats sont indépendants les uns des autres.
    1. Donner l'expression, en fonction de $n$, de la probabilité qu'aucun candidat issu de ce lycée ne soit admis à l'école.
    2. À partir de quelle valeur de l'entier $n$ la probabilité qu'au moins un élève de ce lycée soit admis à l'école est-elle supérieure ou égale à $0,99$ ?

Correction


Tag:Probabilités

Autres sujets au hasard: Lancer de dés


Voir aussi:
LongPage: h2: 1 - h3: 0