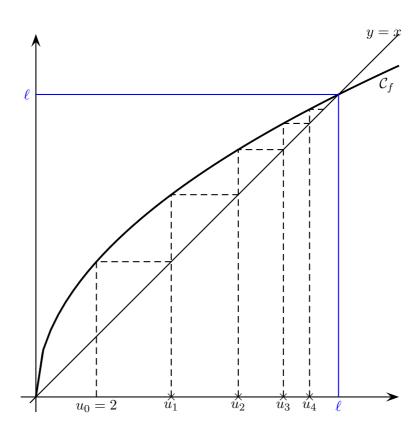
Corrigé

Exercise 1 On a $|z| = \sqrt{1+3} = 2$ et $\arg(z) = \theta$ avec $\cos \theta = \frac{1}{2}$ et $\sin \theta = \frac{\sqrt{3}}{2}$. Ainsi, $\arg(z) = \theta = \frac{\pi}{3}$, et, sous forme exponentielle, $z = 2e^{i\frac{\pi}{3}}$.

On a alors, $z^6 = \left(2e^{i\frac{\pi}{3}}\right) = 2^6 e^{6i\frac{\pi}{3}} = 64e^{2i} = 64$

Exercice 2

1.



On peut conjecturer que la suite (u_n) est strictement croissante, minorée par 2, majorée par 10, et convergente vers une limite l.

2. La suite (u_n) est définie par récurrence selon $u_{n+1}=f\left(u_n\right)$.

La fonction f est strictement croissante sur \mathbb{R}_+ , car $f'(x) = \frac{\sqrt{10}}{2\sqrt{x}} > 0$.

Démontrons alors, par récurrence, que la suite (u_n) est croissante, positive et majorée par 10, c'est-à-dire que pour tout entier n, $0 < u_n < u_{n+1} < 10$.

Initialisation : On a $0 < u_0 = 2 < 10$ et $u_1 = \sqrt{10u_0} = \sqrt{20}$, donc $0 < u_0 < u_1 < 10$ et la propriété est donc vraie initialement pour n = 0.

Hérédite : Supposons maintenant que la propriété $0 < u_n < u_{n+1} < 10$ soit vraie pour un certain entier n.

Alors, comme comme f est strictement croissante sur \mathbb{R}_+ , on a $f(0) < f(u_n) < f(u_{n+1}) < f(10)$. Or, f(0) = 0, $f(u_n) = u_{n+1}$, $f(u_{n+1}) = u_{n+2}$, et $f(10) = \sqrt{10 \times 10} = 10$.

Ainsi, on a bien $0 < u_{n+1} < u_{n+2} < 10$, ce qui montre que la propriété est encore vraie au rang n + 1.

Conclusion : On vbient donc de démontrer, d'après le principe de récurrence, que pour tout entier n, $0 < u_n < u_{n+1} < 10$, c'est-à-dire que la suite (u_n) est strictement croissante et bornée par 0 et 10.

3. (u_n) étant croissante et majorée, on en déduit qu'elle converge vers une limite ℓ qui vérifie $\ell = \sqrt{10\ell}$, soit $\ell = 0$ ou $\ell = 10$.

Comme $u_0 = 2$ et que (u_n) est croissante, la suite ne peut pas converger vers 0.

Sa limite est donc $\ell = 10$.