Source Latex: Devoir corrigé de mathématiques, Intégrales - Nombres complexes

Terminale S

Intégrales - Nombres complexes

Sujet d'oral de rattrapage de mathématiques, en terminal S: suite d'intégrales et nombres complexes
Fichier
Type: Devoir
File type: Latex, tex (source)
Télécharger le document pdf compilé pdficon
Description
Sujet d'oral de rattrapage de mathématiques, en terminal S: suite d'intégrales et nombres complexes
Niveau
Terminale S
Table des matières
  • Suite d'intégrales
  • Nombre complexe: puissance d'un nombre complexe
Mots clé
intégrale, suite, nombres complexes, puissance d'un nombre complexe, exponentielle complexe, oral, baccalauréat, rattrapage, mathématiques, maths
Voir aussi:

Documentation sur LaTeX
lien vers la documentation Latex
Source LaTex icone

Source Latex sujet du devoir

\documentclass[12pt,onecolumn,a4paper]{article}
\usepackage[T1]{fontenc}
\usepackage[french]{babel}
%\selectlanguage{francais}
\usepackage[utf8]{inputenc}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{enumerate}
\usepackage{pst-all}
\usepackage{hyperref}
\hypersetup{
    pdfauthor={Yoann Morel},
    pdfsubject={Oral de rattrapage du bac de mathématiques},
    pdftitle={Oral de rattrapage - Baccalauréat S - Mathématiques},
    pdfkeywords={suite d'intégrales, primitive, puissance d'un nombre complexe, forme exponentielle, oral de rattrapage, bac, baccalauréat, terminale S}
}
\hypersetup{
    colorlinks = true,
    linkcolor = red,
    anchorcolor = red,
    citecolor = blue,
    filecolor = red,
    urlcolor = red
}

% Raccourcis diverses:
\newcommand{\nwc}{\newcommand}
\nwc{\dsp}{\displaystyle}
\nwc{\bge}{\begin{equation}}\nwc{\ene}{\end{equation}}
\nwc{\bgar}{\begin{array}}\nwc{\enar}{\end{array}}
\nwc{\bgit}{\begin{itemize}}\nwc{\enit}{\end{itemize}}
\nwc{\bgen}{\begin{enumerate}}\nwc{\enen}{\end{enumerate}}

\nwc{\la}{\left\{}\nwc{\ra}{\right\}}
\nwc{\lp}{\left(}\nwc{\rp}{\right)}
\nwc{\lb}{\left[}\nwc{\rb}{\right]}

\nwc{\ul}{\underline}
\nwc{\tm}{\times}
\nwc{\V}{\overrightarrow}
\newcommand{\zb}{\mbox{$0\hspace{-0.67em}\mid$}}
\newcommand{\db}{\mbox{$\hspace{0.1em}|\hspace{-0.67em}\mid$}}
\newcommand{\ct}{\centerline}

\def\N{{\rm I\kern-.1567em N}}
\def\R{{\rm I\kern-.1567em R}}
\def\C{{\rm C\kern-4.7pt
\vrule height 7.7pt width 0.4pt depth -0.5pt \phantom {.}}}
\def\Z{{\sf Z\kern-4.5pt Z}}
\def\euro{\mbox{\raisebox{.25ex}{{\it =}}\hspace{-.5em}{\sf C}}}

\newcounter{nex}[section]\setcounter{nex}{0}
\newenvironment{EX}{%
\stepcounter{nex}
\bigskip{\noindent{{\bf Exercice }}\arabic{nex}}\hspace{0.5cm}
}{}
\nwc{\bgex}{\begin{EX}}\nwc{\enex}{\end{EX}}

\nwc{\bgmp}{\begin{minipage}}\nwc{\enmp}{\end{minipage}}
\setlength{\columnsep}{30pt}	% default=10pt
\setlength{\columnseprule}{1pt}	% default=0pt (no line)
\setlength{\headsep}{0in}		% default=0.35in
\setlength{\parskip}{0ex}
\setlength{\parindent}{0mm}
\voffset=-1cm
\textheight=26.8cm
\textwidth=18.cm
\topmargin=0cm
\headheight=-0.cm
\footskip=1.cm
\oddsidemargin=-1.cm

\usepackage{fancyhdr}
\pagestyle{fancyplain}
\setlength{\headheight}{0cm}
\renewcommand{\headrulewidth}{0pt}
\renewcommand{\footrulewidth}{0pt}
\lhead{}\chead{}\rhead{}
\lfoot{Y. Morel - \href{https://xymaths.fr/Lycee/TS/Oral-Bac-S/}{ xymaths - Terminale S }}
\rfoot{Sujet d'oral de rattrapage du bac de mathématiques\ - \thepage/\pageref{LastPage}}
\cfoot{}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}

\ct{\bf\LARGE{Oral de math\'ematiques}}

\ct{\rule{6cm}{0.1pt}}

\bigskip
\input{Entete.tex}
\bigskip
\ct{\rule{6cm}{0.1pt}}
\bigskip

\bgex

On consid\`ere la suite $(I_n)$ d\'efinie pour tout entier naturel $n$ par
l'expression $\dsp I_n=\int_0^1\dfrac{e^{nx}}{1+e^x}dx$. 
\bgen
\item Calculer l'int\'egrale $\dsp J_n=\int_0^1 e^{nx}dx$.
\item Calculer $I_1$. 
\item D\'eterminer le sens de variation de la suite $(I_n)$. 
\item Montrer que pour tout r\'eel $x\in[0;1]$, 
  $\dfrac14\leqslant\dfrac{1}{1+e^x}\leqslant\dfrac{1}{2}$. 
\item En d\'eduire un encadrement de $I_n$ puis la limite de la suite $(I_n)$. 
\enen
\enex

\bigskip

\bgex
Soit le nombre complexe $z=1+i\sqrt3$. 
Calculer $z^6$. 

\enex

\label{LastPage}
\end{document}

Télécharger le fichier source Latex