Corrigé

Le discriminant de cette équation du second degré est $\Delta = \left(2\sqrt{2}\right)^2 - 4 \times 1 \times 4 = -8 < 0$. L'équation admet donc deux solutions complexes conjuguées :

$$z_1 = \frac{2\sqrt{2} - i\sqrt{8}}{2} = \frac{2\sqrt{2} - i2\sqrt{2}}{2} = \sqrt{2}(1-i)$$
 , $z_2 = \overline{z_1} = \sqrt{2}(1+i)$

On a $|z_1| = 2$ et $arg(z_1) = \theta$ tel que $\cos \theta = \frac{\sqrt{2}}{2}$ et $\cos \theta = -\frac{\sqrt{2}}{2}$, ainsi $\theta = -\frac{\pi}{4}$, et donc, $z_1 = 2e^{-i\frac{\pi}{4}}$. On a alors, $z_2 = \overline{z_1} = 2e^{i\frac{pi}{4}}$.

Exercice 2

1. Pour tout x > 0, $g'(x) = 2x + \frac{1}{x} = \frac{2x^2 + 1}{x}$.

Pour x > 0, on $x^2 > 0$, donc $2x^2 + 1 > 1 > 0$, et ainsi, g'(x) > 0, et g est strictement croissante sur \mathbb{R}_+^* .

En 0:
$$\lim_{x\to 0^+} \ln(x) = -\infty$$
, et donc $\lim_{x\to 0^+} g(x) = -\infty$

 $\begin{aligned} \mathbf{En} \ \mathbf{0} : & \lim_{x \to 0^+} \ln(x) = -\infty, \, \text{et donc } \lim_{x \to 0^+} g(x) = -\infty. \\ \mathbf{En} \ +\infty : & \lim_{x \to +\infty} x^2 = \lim_{x \to +\infty} \ln(x) = +\infty, \, \text{donc, par addition des limites} : & \lim_{x \to +\infty} g(x) = +\infty. \end{aligned}$

x	0 -	$+\infty$
g'(x)	+	
	-	$+\infty$
g	7	
	$-\infty$	

2. g est continue, strictement croissante sur $]0; +\infty[$, avec $\lim_{x\to 0^+} g(x) = -\infty < 0$ et $\lim_{x\to +\infty} g(x) = +\infty > 0$, donc, d'après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) il existe une unique solution α à l'équation g(x) = 0.

A la calculatrice, on a g(0,65) < 0 et g(0,66) > 0, ce qui montre que $0,65 < \alpha < 0,66$.

3. Pour tout x > 0, $f'(x) = 2x + 2\frac{1}{x}\ln(x) = \frac{2}{x}(x^2 + \ln(x)) = \frac{2}{x}g(x)$.

x	0 α	$+\infty$
g	$-\infty$, +∞
g(x)	— ф -	H
f'(x)	- Ø -	H
f	$f(\alpha)$	1

f admet donc bien un minimum en $x = \alpha$.