Compléter avec \Rightarrow , \Leftarrow , \iff ... ou/et avec "si", "alors", "si et seulement si" ... Indiquer de plus, lorsque c'est possible, le nom de la propriété ou du théorème correspondant.

(u_n) est une suite telle que $u_0 \le u_1$, $u_1 \le u_2$ et $u_2 \le u_3$	(u_n) est croissante
$\lim_{x \to 2} f(x) = +\infty$	$x = 2$ est asymptote à C_f
$\forall x \in \mathbb{R}^*, f(x) = 3x^2 - \frac{1}{x}$	$\forall x \in \mathbb{R}^*, f'(x) = 6x + \frac{1}{x^2}$
$x^2 > 1$	x > 1
(u_n) est croissante et, pour $n \in \mathbb{N}$, $u_n < 3$	(u_n) converge vers 3
(u_n) telle que $u_0 = 8$ et $u_{n+1} = 3u_n + 2$	(u_n) converge vers -1
(u_n) croissante et converge vers $l \in \mathbb{R}$	Pour tout $n \in \mathbb{N}$, $u_n \leqslant l$
Pour tout $x \in \mathbb{R}$, $f'(x) \ge 0$	f croissante sur $[3;8]$
$(x+2)(x^2 - 3x + 2) = 0$	$\begin{cases} x+2=0\\ \text{ou}\\ x^2-3x+2=0 \end{cases}$
$\forall x \in [0; 1], f(x) \leqslant g(x)$	$\int_0^1 f(x) dx \leqslant \int_0^1 g(x) dx$
f continue telle que $f(3) = -1$ et $f(8) = 6$	Il existe $\alpha \in]3;8[$ tel que $f(\alpha) = 0$
f continue et strictement croissante sur $[0; 1]$, avec $f(0) = -2$ et $f(1) = 3$	Il existe un unique $\alpha \in]0;1[$ tel que $f(\alpha)=0$
Pour tout $x > 10$, $g(x) \le f(x) \le h(x)$ et $\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} h(x) = 3$	$\lim_{x \to +\infty} f(x) = 3$

$\cos \theta = \frac{1}{2}$	$\theta = \frac{1}{4}$
$ax^2 + bx + c = 2x^2 + 3x - 2$	a = 2, b = 3, c = -2
f continue sur $[a;b]$	f dérivable sur $[a;b]$
f positive sur $[a; b]$	La fonction F qui est une primitive de f sur $[a;b]$ est croissante
$P(A \cap B) = P(A) \times P(B)$	A et B sont indépendants
P(A) + P(B) = 1	$A = \overline{B}$
$\int_0^{10} f(x) dx = 1$	f est une fonction densité de probabilité sur $[0; 10]$
La v.a. X suit la loi $\mathcal{N}(\mu; \sigma^2)$	La v.a. $Y = \frac{X - \mu}{\sigma}$ suit la loi $\mathcal{N}(0; 1)$.
X suit la loi uniforme sur $[-2; 8]$	E(X) = 3