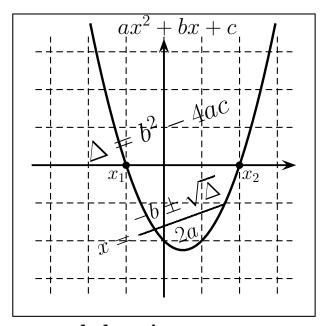
Second degré et polynômes

Résolution d'équation, inéquations et problèmes du second degré

Y. Morel

Table des matières

1	Triı	nôme du second degré
	1.1	Equations du second degré
	1.2	Signe d'un trinôme du second degré
	1.3	Exercices
2	Pol	ynôme
	2.1	Théorème fondamental
	2.2	Exercices



1 Trinôme du second degré

1.1 Equations du second degré

Définition

On appelle trinôme du second degré toute expression de la forme $ax^2 + bx + c$, où a, b et c sont trois nombres réels quelconques, et $a \neq 0$.

Exemple : de trinômes du second degré :

Trinômes	a	b	c
$P(x) = 3x^2 + 2x - 5$	a=3	b=2	c = -5
$Q(x) = \sqrt{2}x^2 - 3x + \frac{2}{3}$	$a=\sqrt{2}$	b = -3	$c = \frac{2}{3}$
$R(x) = -x^2 + \frac{5}{2}x$	a = -1	$b = \frac{5}{2}$	c = 0
$S(x) = 3x^2 - (1 - \sqrt{2})x - \pi$	a=3	$b = -\left(1 - \sqrt{2}\right)$	$c = -\pi$
$T(x) = \frac{6}{5}x^2 - 3$	$a = \frac{6}{5}$	b = 0	c = -3
$U(x) = (x-2)^2 + 3(x+3)$	$a = \dots$	$b = \dots$	$c = \dots$

Définition

On appelle <u>discriminant</u> du trinôme du second degré $ax^2 + bx + c$, noté Δ , le nombre :

$$\Delta = b^2 - 4ac .$$

Exemple : de discriminant de trinômes du second degré :

Trinômes	a	b	c	Δ
$P(x) = 3x^2 + 2x - 5$	a=3	b=2	c = -5	$\Delta = 64$
$Q(x) = x^2 + 2x + 1$	a = 1	b=2	c = 1	$\Delta = 0$
$R(x) = x^2 - \sqrt{2}x - 5$	a = 1	$b = \sqrt{2}$	c = -5	$\Delta = 22$

Propriété

• Si $\Delta > 0$, l'équation $ax^2 + bx + c = 0$ (avec $a \neq 0$) admet deux solutions distinctes (aussi appelées <u>racines</u>):

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

• Si $\Delta = 0$, l'équation $ax^2 + bx + c = 0$ (avec $a \neq 0$) admet une unique solution (ou <u>racines</u>) double :

$$x_0 = \frac{-b}{2a}$$

• Si $\Delta < 0$, l'équation $ax^2 + bx + c = 0$ n'admet aucune solution réelle.

Exercice 1. Déterminer les solutions des équations :

a)
$$x^2 - 2x + 1 = 0$$

Solution: $\Delta = (-2)^2 - 4 \times 1 \times 1 = 0$, et donc l'équation admet une solution double : $x_0 = \frac{-(-2)}{2 \times 1} = 1$.

Remarque : On aurait aussi pu remarquer que le trinôme est une indentité remarquable : $x^2 - 2x + 1 = (x - 1)^2$, et donc $x^2 - 2x + 1 = 0 \iff (x - 1)^2 = 0 \iff x = 1$.

b)
$$x^2 - 1 = 0$$

 $\underline{\text{solution}}$: $\underline{\Delta} = 0$ $1 \times 1 \times (1) = 1 \times 0$, we do not require the detay solutions distincted

$$x_1 = \frac{-0 - \sqrt{4}}{2 \times 1} = -1$$
 et, $x_2 = \frac{-0 + \sqrt{4}}{2 \times 1} = 1$.

Remarque : On peut très bien résoudre cette équation du second degré sans calculer Δ :

$$x^{2} - 1 = 0 \iff x^{2} = 1 \iff \left(x = \sqrt{1} = 1 \text{ ou, } x = -\sqrt{1} = -1\right)$$

c) $4x^2 + 8x - 5 = 0$

Solution : $\Delta = 8^2 - 4 \times 4 \times (-5) = 144 > 0$, et donc l'équation admet deux solutions distinctes :

$$x_1 = \frac{-8 - \sqrt{144}}{2 \times 4} = \frac{-20}{8} = -\frac{5}{2}$$
 et, $x_2 = \frac{-8 + \sqrt{144}}{2 \times 4} = \frac{1}{2}$.

d) $3x^2 + x + 6 = 0$

Solution : $\Delta = 1^2 - 4 \times 3 \times 6 = -71 < 0$, et donc l'équation n'admet aucune solution : $S = \emptyset$.

1.2 Signe d'un trinôme du second degré

Propriété

Soit $f(x) = ax^2 + bx + c$, $(a \neq 0)$. Alors:

• Si $\Delta > 0$, l'équation f(x) = 0 admet deux solutions distinctes x_1 et x_2 et

x	$-\infty$		x_1		x_2		$+\infty$
f(x)		Signe		Signe		Signe de	
J (~)		de a	Ĭ	de - a	Ĭ	de a	

• Si $\Delta = 0$, l'équation f(x) = 0 admet une unique solution x_0 et

x	$-\infty$	а	0	$+\infty$
f(x)		Signe	Signe	
3 ()		de a	de a	

• Si $\Delta < 0$, le trinôme f(x) n'a pas de racine et

x	$-\infty$		$+\infty$
f(x)		Signe de a	

Exercice 2. Etudier le signe de :

a) $P(x) = x^2 - 2x + 1$

Solution : $\Delta=0$ et donc le trinôme admet une unique racine (double) : $x_0=1$, d'où le tableau de signes :

x	$-\infty$		1		$+\infty$
P(x)		+	Ф	+	

Remarque: P(x) est une identité remarquable : $P(x) = x^2 - 2x + 1 = (x - 1)^2$, et donc P(x), qui est un carré, est toujours positif ou nul.

 ω (ω) — ω

Solution : $\Delta = 4 > 0$, et donc le trinôme admet deux racines distinctes : $x_1 = -1$ et $x_2 = 1$. On a donc le tableau de signes :

x	$-\infty$		-1		1		$+\infty$
Q(x)		+	Ф	_	Ф	+	

c) $S(x) = -3x^2 + 5x - 2$

Solution: $\Delta = 1 > 0$ et donc le trinôme admet deux racines distinctes : $x_1 = \frac{2}{3}$ et $x_2 = 1$. On a donc le tableau de signes :

x	$-\infty$		$\frac{2}{3}$		1		$+\infty$
Q(x)		_	Ф	+	0	_	

d) $T(x) = 2x^2 + x + 3$

Solution : $\Delta = -23 < 0$ et le trinôme n'admet donc aucune racine. On a donc le tableau de signes :

x	$-\infty$		$+\infty$
f(x)		+	

1.3 Exercices

Exercice 3. Résoudre les inéquations :

a) $x^2 - 2x + 1 > 0$

<u>Solution</u>: On cherche le signe du trinôme du second degré : $P(x) = x^2 - 2x + 1$, qui a pour discriminant $\Delta = 0$ et admet donc une racine double $x_0 = 1$.

On a donc le tableau de signes :

x	$-\infty$		1		$+\infty$
P(x)		+	Ф	+	

et on en déduit que $P(x) = x^2 - 2x + 1 > 0 \iff x \in \mathbb{R} \setminus \{1\}.$

b) $-3x^2 + 5x - 2 \le 0$

<u>Solution</u>: On cherche le signe du trinôme du second degré : $Q(x) = -3x^2 + 5x - 2$ qui a pour discriminant $\Delta = 1 > 0$ et admet donc deux racines distinctes $x_1 = \frac{2}{3}$ et $x_2 = 1$. On a donc le tableau de signes :

x	$-\infty$		0		35		$+\infty$
Q(x)		+	0	_	Ф	_	

et on en déduit que $Q(x) = -3x^2 + 5x - 2 \le 0 \iff x \in]-\infty; -6] \cup [1; +\infty[$.

c) $x(2x-5) \ge x-6$

Solution: $x(2x-5) \geqslant x-6 \iff 2x^2-5x \geqslant x-6 \iff 2x^2-6x+6 \geqslant 0$

On cherche donc le signe du trinôme du second degré : $R(x) = 2x^2 - 6x + 6$ qui a pour discriminant $\Delta = -12 < 0$ et n'admet donc aucune racine.

On a donc le tableau de signes :

x	$-\infty$		$+\infty$
R(x)		+	

toujours vérifiée, quelque soit le nombre réel x.

Exercice 4. Etudier le signe de :

a)
$$f(x) = -x^2 + x - 3$$

Solution: La fonction f est un trinôme du second degré de discriminant $\Delta = -11 < 0$ et n'admet donc aucune racine réelle.

On a donc le tableau de signes :

x	$-\infty$	$+\infty$
f(x)		_

b)
$$g(x) = x - \frac{1}{x}$$

Solution:
$$g(x) = x - \frac{1}{x} = \frac{x^2 - 1}{x}$$
.

Solution : $g(x) = x - \frac{1}{x} = \frac{x^2 - 1}{x}$. Le trinôme du second degré du némérateur a pour discriminant $\Delta = 4 > 0$ et a pour racines $x_1 = -1 \text{ et } x_2 = 1$

(ou encore $x^2 - 1 = x^2 - 1^2 = (x - 1)(x + 1)$ est une identité remarquable...)

On peut alors dresser le tableau de signes de q:

x	$-\infty$		-1		0		1		$+\infty$
$x^2 - 1$		+	Ф	_		_	Ф	+	
x		_		_	Ф	+		+	
g(x)		_	Ф	+			0	+	

c)
$$h(x) = 2x + \frac{4}{x-3}$$

Solution:
$$h(x) = 2x + \frac{4}{x-3} = \frac{2x^2 - 6x + 4}{x-3} = 2\frac{x^2 - 3x + 2}{x-3}$$
.

Le trinôme du second degré du numérateur a pour discriminant $\Delta = (-3)^2 - 4 \times 1 \times 2 = 1 > 0$ et admet donc deux racines distinctes $x_1 = 1$ et $x_2 = 2$.

On peut alors dresser le tableau de signes de g:

x	$-\infty$		1		2		3		$+\infty$
2		+		+		+		+	
$x^2 - 3x + 2$		+	Ф	_	0	+		+	
x-3		_		_		_	Ф	+	
h(x)		_	Ф	+	0	_		+	

Exercice 5. (Equations bicarrées)

En effectuant le changement de variable $X=x^2$, résoudre les équations :

a)
$$x^4 - 13x^2 + 36 = 0$$

Solution: On pose $x^2 = X$, et alors $x^4 = (x^2)^2 = X^2$, et l'équation devient $X^2 - 13X + 36 = 0$. On est ainsi ramené à une équation du second degré qui a pour discriminant $\Delta = (-13)^2 4 \times 1 \times 36 = 25 > 0$, et qui admet donc deux solutions distinctes $X_1 = 4$ et $X_2 = 9$.

Il reste à revenir à l'équation initiale : $x^2 = X_1 = 4 \iff (x = -2 \text{ ou } x = 2)$ et $x^2 = X_2 = 9 \iff (x = -3 \text{ ou } x = 3).$

5

L'équation admet donc quatre solutions : $S = \{-3; -2; 2; 3\}$.

b) $x^2 + \frac{1}{x^2} - 6 = 0$

Solution:
$$x^2 + \frac{1}{x^2} - 6 = 0 \iff \frac{x^4 + 1 - 6x^2}{x^2} = 0 \iff \frac{x^4 - 6x^2 + 1}{x^2} = 0$$

On pose $x^2 = X$, et alors $x^4 = (x^2)^2 = X^2$,

et l'équation devient
$$\frac{X^2 - 6X + 1}{X} = 0 \iff (X^2 - 6X + 1) = 0 \text{ et } X \neq 0$$
.

On est ainsi ramené à une équation du second degré qui a pour discriminant $\Delta = (-6)^2 - 4 \times 1 \times 1 = 32 > 0$, et qui admet donc deux solutions distinctes $X_1 = \frac{6 - \sqrt{32}}{2} = \frac{6 - 4\sqrt{2}}{2} = 3 - 2\sqrt{2}$ et $X_2 = 3 + 2\sqrt{2}$.

Il reste à revenir à l'équation initiale : $x^2 = X_1 = 3 - 2\sqrt{2} < 0$ qui est impossible et $x^2 = X_2 = 3 + 2\sqrt{2} \iff \left(x = -\sqrt{3 + 2\sqrt{2}} \text{ ou } x = \sqrt{3 + 2\sqrt{2}}\right)$.

L'équation admet donc deux solutions : $S = \left\{-\sqrt{3+2\sqrt{2}}; \sqrt{3+2\sqrt{2}}\right\}$.

Exercice 6. Déterminer les points d'intersection (s'ils existent) de la parabole \mathcal{P} et de la droite \mathcal{D} d'équations : $\mathcal{P}: y = x^2 - 3x + 1$ et $\mathcal{D}: y = -2x + 1$

Solution: Les points M(x;y) d'intersection de \mathcal{P} et \mathcal{D} vérifient:

- $M(x;y) \in \mathcal{P} \iff y = x^2 3x + 1$
- $M(x;y) \in \mathcal{D} \iff y = -2x + 1$

Ainsi, on doit avoir
$$y = x^2 - 3x + 1 = -2x + 1$$
,
d'où $x^2 - x = 0 \iff x(x - 1) = 0 \iff \left(x = 0 \text{ ou}, x = 1\right)$

Les points d'intersection sont donc les points de coordonnées (0;1) et (1;-1).

Exercice 7. Déterminer les points d'intersection des paraboles \mathcal{P} et \mathcal{P}' d'équations : \mathcal{P} : $y = x^2 - x + 2$ et \mathcal{P}' : $y = -x^2 + 2x - 6$

Solution: Les points M(x;y) d'intersection de \mathcal{P} et \mathcal{P}' vérifient:

- $M(x;y) \in \mathcal{P} \iff y = x^2 x + 2$
- $M(x;y) \in \mathcal{D} \iff y = -x^2 + 2x 6$

Ainsi, on doit avoir $y = x^2 - x + 2 = -x^2 + 2x - 6$, d'où $2x^2 - 3x + 8 = 0$.

Cette équation du second degré a pour discriminant $\Delta = -55 < 0$ et n'admet donc aucune solution : les paraboles \mathcal{P} et \mathcal{P}' n'ont donc aucun point d'intersection.

Exercice 8. Soit m un nombre réel. On considère l'équation $4x^2 + (m-1)x + 1 = 0$.

Déterminer m pour que cette équation admette une unique solution.

Déterminer alors cette solution.

Solution : Cette équation du second degré a pour discriminant :

$$\Delta = (m-1)^2 - 4 \times 4 \times 1 = (m-1)^2 - 16.$$

L'équation admet une unique solution si et seulement si $\Delta=0$, soit $(m-1)^2-16=0 \iff m^2-2m-15=0$.

Le discriminant de cette dernière équation est $\Delta' = (-2)^2 - 4 \times 1 \times (-15) = 64 > 0$, qui admet donc deux solutions distinctes

$$m_1 = \frac{-(-2) - \sqrt{64}}{2 \times 1} = -3$$
 et, $m_2 = \frac{-(-2) + \sqrt{64}}{2 \times 1} = 5$.

6

Ainsi, pour m = -3 et m = 5 l'équation $4x^2 + (m-1)x + 1 = 0$ admet une unique solution :

 $x = \frac{-(-4)}{2 \times 4} = \frac{1}{2}.$

• Pour m = 5, $4x^2 + (m-1)x + 1 = 0 \iff 4x^2 + 4x + 1 = 0$ qui a pour unique solution : $x = \frac{-4}{2 \times 4} = -\frac{1}{2}$.

2 Polynôme

2.1 Théorème fondamental

Définition

Un polynôme est une expression de la forme :

$$ax^{n} + bx^{n-1} + cx^{n-2} + \dots + dx + e$$

avec $a,\,b$, $c,\,d$ et e des nombres réels quelconques, et n un entier naturel.

L'entier n est le **degré** du polynôme.

Exemple:

- $\bullet P(x) = 3x^4 2x^3 + \frac{1}{2}x^2 \sqrt{2}x + 3$ est un polynôme de degré 4.
- $Q(x) = 5x^7 3x^2 + 4$ est un polynôme de degré 7.
- $R(x) = x^2 + x + 1$ est un polynôme (trinôme) de degré 2.

Théorème (Propriété fondamentale des polynômes)

Soit P(x) un polynôme de degré n et a une racine de P (c'es-à-dire que P(a) = 0). Alors, P(x) se factorise par (x - a): il existe un polynôme Q(x) de degré n - 1 tel que

$$P(x) = (x - a)Q(x)$$

Exercice 9. Soit le polynôme $P(x) = x^3 - x^2 - x - 2$.

1. Montrer que 2 est une racine de P, puis factoriser P.

Solution: $P(2) = 2^3 - 2^2 - 2 - 2 = 8 - 4 - 2 - 2 = 0$, et donc 2 est bien une racine de P.

On en déduit que P se factorise suivant P(x) = (x-2)Q(x).

De plus P est un polynôme de degré 3, et donc Q est un polynôme de degré 2 : Q(x) s'écrit sous la forme $Q(x) = ax^2 + bx + c$.

On cherche donc a, b et c tels que

$$P(x) = x^3 - x^2 - x - 2 = (x - 2)(ax^2 + bx + c)$$
$$= ax^3 + (-2a + b)x^2 + (-2b + c)x - 2c$$

En identifiant les coefficients de ces polynômes, on obtient le système : $\begin{cases} a = 1 \\ -2a + b = -1 \\ -2b + c = -1 \\ -2c = -2 \end{cases}$

La première équation donne directement a=1, la dernière donne c=1, et la deuxième $-2a+b=-1 \iff b=-1+2a=1$.

(On vérifie bien alors que la troisième équation est aussi satisfaite : $-2b+c=-2\times 1+1=-1$).

 $\psi(x) = ax + bx + c = x + x + 1$, of the polynomic 1 be factorise survaint

$$P(x) = (x-2)Q(x) = (x-2)(x^2 + x + 1) .$$

2. Déterminer alors toutes les solutions de l'équation P(x) = 0.

Solution: Grâce à la factorisation précédente, l'équation P(x) = 0 est une équation produit :

$$P(x) = 0 \iff (x-2)Q(x) = (x-2)(x^2 + x + 1) = 0$$

 $\iff (x-2) = 0 \text{ ou } x^2 + x + 1 = 0$

La première équation équation donne directement x=2 (la solution du 1.), tandis que la deuxième est une équation du second degré de discriminant $\Delta=-3<0$ et n'admet donc aucune solution.

Ainsi, l'équation P(x) = 0 admet une unique solution x = 2.

Corollaire

Si le trinôme du second degré $ax^2 + bx + c$ admet deux racines x_1 et x_2 , alors il se factorise selon $ax^2 + bx + c = a(x - x_1)(x - x_2)$.

Exercice 10. Factoriser les trinômes

1.
$$P(x) = x^2 - 3x + 2$$

Solution : P(x) est un trinôme du second degré de discriminant $\Delta = 1 > 0$ et admet donc deux racines distinctes $x_1 = 1$ et $x_2 = 2$.

Le trinôme P se factorise alors suivant : $P(x) = a(x - x_1)(x - x_2) = (x - 1)(x - 2)$.

$$2. \ Q(x) = 2x^2 + 2x - 4$$

Solution : Q(x) est un trinôme du second degré de discriminant $\Delta = 36 > 0$ et admet donc deux racines distinctes $x_1 = -2$ et $x_2 = 1$.

Le trinôme Q se factorise alors suivant :

$$P(x) = a(x - x_1)(x - x_2) = 2(x - (-2))(x - 1) = 2(x + 2)(x - 1).$$

2.2 Exercices

Exercice 11. Soit le polynôme $P(x) = 2x^3 + 7x^2 + 7x + 2$.

1. Montrer que -2 est une racine de P, puis factoriser P.

Solution: $P(-2) = 2 \times (-2)^3 + 7 \times (-2)^2 + 7 \times (-2) + 2 = -16 + 28 - 14 + 2 = 0$, et donc -2 est bien une racine de P.

On en déduit que P se factorise suivant P(x) = (x - (-2))Q(x) = (x + 2)Q(x).

De plus P est un polynôme de degré 3, et donc Q est un polynôme de degré 2 : Q(x) s'écrit sous la forme $Q(x) = ax^2 + bx + c$.

On cherche donc a, b et c tels que

$$P(x) = 2x^3 + 7x^2 + 7x + 2 = (x+2)(ax^2 + bx + c)$$
$$= ax^3 + (2a+b)x^2 + (2b+c)x + 2c$$

En identifiant les coefficients de ces polynômes, on obtient le système : $\begin{cases} 2a+b = 7 \\ 2b+c = 7 \\ 2c = 2 \end{cases}$

La première équation donne directement a=2, la dernière donne c=1, et la deuxième $2a+b=7 \iff b=7-2a=3$.

(On vérifie bien alors que la troisième équation est aussi satisfaite : $2b + c = 2 \times 3 + 1 = 7$).

Ainsi $Q(x) = ax^2 + bx + c = 2x^2 + 3x + 1$, et le polynôme P se factorise suivant

$$P(x) = (x+2)Q(x) = (x+2)(2x^2 + 3x + 1) .$$

2. Déterminer alors toutes les solutions de l'équation P(x) = 0, puis dresser le tableau de signe de P(x).

Solution: Grâce à la factorisation précédente, l'équation P(x) = 0 est une équation produit :

$$P(x) = 0 \iff (x+2)Q(x) = (x+2)(2x^2 + 3x + 1) = 0$$

 $\iff (x+2) = 0 \text{ ou } 2x^2 + 3x + 1 = 0$

La première équation équation donne directement x = -2 (la solution du 1.), tandis que la deuxième est une équation du second degré de discriminant $\Delta = 1 > 0$ et admet donc deux solutions distinctes $x_1 = -1$ et $x_2 = -\frac{1}{2}$.

Ainsi, l'équation P(x) = 0 admet trois solutions $S = \left\{-2; -1; -\frac{1}{2}\right\}$.

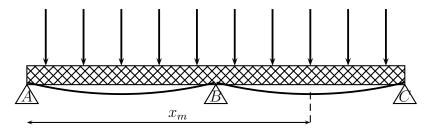
On peut alors dresser le tableau de signes de $P(x) = (x+2)(2x^2+3x+1)$:

x	$-\infty$		-2		-1		$-\frac{1}{2}$		$+\infty$
x+2		_	Ф	+		+		+	
$2x^2 + 3x + 1$		+		+	Ф	_	Ф	+	
P(x)		_	Ф	+	Ф	_	Ф	+	

Exercice 12. Déformation d'une poutre

Une poutre de longueur 2 mètres repose sur trois appuis simples A, B et C, l'appui B étant situé au milieu de [AC].

Elle supporte une charge uniformément répartie de 1000 N.m⁻¹ (newtons par mètre). Sous l'action de cette charge, la poutre se déforme.



On démontre que le point situé entre B et C où la déformation (la flèche) est maximum, a une abscisse x_m qui est solution de l'équation :

$$32x^3 - 156x^2 + 240x - 116 = 0.$$

1. Vermer que i est solution de cette equation.

<u>Solution</u>: Pour x = 1, $32 \times 1^3 - 156 \times 1^2 + 240 \times 1 - 116 = 32 - 156 + 240 - 116 = 0$, et donc x = 1 est bien une solution de cette équation.

2. Factoriser alors l'équation et la résoudre.

Solution: Le polynôme $P(x) = 32x^3 - 156x^2 + 240x - 116$ se factorise alors suivant

$$P(x) = 32x^3 - 156x^2 + 240x - 116$$
$$= (x - 1)(ax^2 + bx + c)$$
$$= ax^3 + (-a + b)x^2 + (-b + c)x - c$$

En identifiant les coefficients de ces polynômes, on obtient le système : $\begin{cases} a = 32 \\ -2 + b = -156 \\ -2 + c = 240 \\ -c = -116 \end{cases}$

La première équation donne directement a=32, la dernière donne c=16, et la deuxième $-a+b=-156 \iff b=-156+a=-124$.

(On vérifie bien alors que la troisième équation est aussi satisfaite : $-b+c=-\times(-124)+116=240$).

Ainsi le polynôme P se factorise suivant

$$P(x) = (x - 1)(32x^2 - 124x + 116) .$$

3. En déduire x_m , position de la section de poutre de flèche maximum entre les points B et C.

Solution: La position x_m de flèche maximum est solution de l'équation P(x) = 0.

D'après la factorisation précédente :

$$P(x) = 0 \iff (x - 1)(32x^2 - 124x + 116) = 0$$
$$\iff \left(x - 1 = 0 \text{ ou } 32x^2 - 124x + 116 = 0\right)$$

La première équation donne x=1 (la solution du 1.), tandis que la deuxième équation du second degré a pour discriminant $\Delta=(-124)^2-4\times32\times116=528>0$, et admet donc deux solutions distinctes $x_1=\frac{-(-124)-\sqrt{528}}{2\times32}\simeq1,58$ et $x_2=\frac{-(-124)+\sqrt{528}}{2\times32}\simeq2,30$.

P(x) = 0 a donc trois solutions, et $x_m = x_1 \simeq 1,58$ (car $x_2 > 2$ est en dehors de la poutre de longueur 2m, et x = 1 correspond au point B).