Source Latex: Corrigé du devoir de mathématiques en seconde


Fichier
Type: Corrigé de devoir
File type: Latex, tex (source)
Télécharger le document pdf compilé pdficon
Description
Devoir corrigé de mathématiques, 2nde: résolution d'équations
Niveau
seconde
Mots clé
devoir corrigé de mathématiques, résolution d'équations, calcul algébrique, factorisation, expression algébrique développée et factorisée, maths
Voir aussi:

Documentation sur LaTeX
lien vers la documentation Latex
Source LaTex icone

Source Latex de la correction du devoir

\documentclass[12pt,onecolumn,a4paper]{article}

\usepackage[french]{babel}
%\selectlanguage{francais}
\usepackage[utf8]{inputenc}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{enumerate}
\usepackage{array}
\usepackage{calc}
\usepackage{pst-all}
\usepackage{hyperref}
\hypersetup{
    pdfauthor={Yoann Morel},
    pdfsubject={Correction du devoir de mathématiques de seconde},
    pdftitle={Corrigé du devoir de mathématiques de 2nde},
    pdfkeywords={calcul algébrique, fractions, développer, factoriser, identités remarquables}
}
\hypersetup{
    colorlinks = true,
    linkcolor = blue,
    anchorcolor = red,
    citecolor = blue,
    filecolor = red,
    urlcolor = red
}
\voffset=-1cm
% Raccourcis diverses:
\newcommand{\nwc}{\newcommand}
\nwc{\dsp}{\displaystyle}
\nwc{\bge}{\begin{equation}}\nwc{\ene}{\end{equation}}
\nwc{\bgar}{\begin{array}}\nwc{\enar}{\end{array}}
\nwc{\bgit}{\begin{itemize}}\nwc{\enit}{\end{itemize}}
\nwc{\bgen}{\begin{enumerate}}\nwc{\enen}{\end{enumerate}}

\nwc{\la}{\left\{}\nwc{\ra}{\right\}}
\nwc{\lp}{\left(}\nwc{\rp}{\right)}
\nwc{\lb}{\left[}\nwc{\rb}{\right]}

\nwc{\ul}{\underline}
\nwc{\tm}{\times}
\nwc{\V}{\overrightarrow}
\newcommand{\zb}{\mbox{$0\hspace{-0.67em}\mid$}}
\newcommand{\db}{\mbox{$\hspace{0.1em}|\hspace{-0.67em}\mid$}}
\newcommand{\ct}{\centerline}

\nwc{\bgsk}{\bigskip}
\nwc{\vsp}{\vspace{0.1cm}}
\nwc{\vspd}{\vspace{0.2cm}}
\nwc{\vspt}{\vspace{0.3cm}}
\nwc{\vspq}{\vspace{0.4cm}}

\def\N{{\rm I\kern-.1567em N}}
\def\D{{\rm I\kern-.1567em D}}
\def\R{{\rm I\kern-.1567em R}}
\def\C{{\rm C\kern-4.7pt
\vrule height 7.7pt width 0.4pt depth -0.5pt \phantom {.}}}
\def\Q{\mathbb{Q}}
\def\Z{{\sf Z\kern-4.5pt Z}}
\def\euro{\mbox{\raisebox{.25ex}{{\it =}}\hspace{-.5em}{\sf C}}}

\newcounter{nex}[section]\setcounter{nex}{0}
\newenvironment{EX}{%
\stepcounter{nex}
\bgsk{\noindent{{\bf Exercice }}\arabic{nex}}\hspace{0.5cm}
}{}
\nwc{\bgex}{\begin{EX}}\nwc{\enex}{\end{EX}}

\nwc{\bgfg}{\begin{figure}}\nwc{\enfg}{\end{figure}}
\nwc{\epsx}{\epsfxsize}\nwc{\epsy}{\epsfysize}
\nwc{\bgmp}{\begin{minipage}}\nwc{\enmp}{\end{minipage}}
\newenvironment{centerpage}{\vspace*{\fill}}{
	\protect\vspace*{\fill}}
\setlength{\columnsep}{30pt}		% default=10pt
\setlength{\columnseprule}{1pt}		% default=0pt (no line)
\setlength{\headsep}{0in}		% default=0.35in
\setlength{\parskip}{0ex}
\setlength{\parindent}{0mm}
\voffset=-1cm
\textheight=26.8cm
\textwidth=18.5cm
\topmargin=0cm
\headheight=-0.cm
\footskip=1.cm
\oddsidemargin=-1.cm

\usepackage{fancyhdr}
\pagestyle{fancyplain}
\setlength{\headheight}{0cm}
\renewcommand{\headrulewidth}{0pt}
\renewcommand{\footrulewidth}{.1pt}
\lfoot{Y. Morel - \href{https://xymaths.fr/Lycee/2nde/Mathematiques-2nde.php}{xymaths - 2nde}}
\cfoot{}
\rfoot{Correction du devoir de mathématiques - \thepage/\pageref{LastPage}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\vspace*{-2em}

\ct{\bf\LARGE{Corrig\'e du devoir de math\'ematiques}}

\bgex
$a=\lp\sqrt{12}-\sqrt{3}\rp^2
=\lp\sqrt{12}\rp^2-2\sqrt{12}\sqrt{3}+\lp\sqrt{3}\rp^2
=12-2\sqrt{36}+3=12-12+3=3$

\bigskip
$b=\dfrac{2}{2+\sqrt{3}}
=\dfrac{2(2-\sqrt{3})}{(2+\sqrt{3})(2-\sqrt{3})}
=2(2-\sqrt{3})$

\bigskip
$c=\dfrac{x+\dfrac32}{x+\dfrac12}-1
=\dfrac{\dfrac{2x+3}2}{\dfrac{2x+1}2}-1
=\dfrac{2x+3}2\tm\dfrac2{2x+1}-1
=\dfrac{2x+3}{2x+1}-\dfrac{2x+1}{2x+1}
=\dfrac2{2x+1}$


\bigskip
$d=\dfrac{x(3x)^3}{9x^2}=\dfrac{x\tm 3^3x^3}{3^2x^2}=3x^2$
\enex


\bgex

$\bgar{l}(E_1):\ (2x-3)(-x+2)=0 
  \iff 
  \la\bgar{lll} &2x-3=0 \\ \mbox{ou, } &-x+2=0\enar\right.
  \iff
  \la\bgar{lll} &x=\dfrac{3}{2} \\ \mbox{ou, } &x=2\enar\right.
  \enar$
  \hfill
  $\ul{\mathcal{S}_1=\la \dfrac{3}{2}\,;\,2\ra}$

\medskip
$\bgar{ll}(E_2):\ &(x+2)(3x-2)-(x+2)(x+1)=0
  \iff 
  (x+2)(2x-3)=0\\[.7em]
  &\iff\la\bgar{lll} &x+2=0 \\ \mbox{ou, } &2x-3=0\enar\right.
  \iff
  \la\bgar{lll} &x=-2 \\ \mbox{ou, } &x=\dfrac{3}{2}\enar\right.
  \enar$
  \hfill
  $\ul{\mathcal{S}_2=\la -2\,;\, \dfrac{3}{2}\ra}$
  

\medskip
$\bgar{ll}(E_3):\ &(x^2-9)(3x+7)=0 
  \iff 
  \la\bgar{lll} &x^2-9=0 \\ \mbox{ou, } &3x+7=0\enar\right.\\
  &\iff
  \la\bgar{lll} &x^2=9 \\ \mbox{ou, } &x=-\dfrac{7}{3}\enar\right.
  \iff
  \la\bgar{ll} x=-\sqrt{9}=3\ \mbox{ou, } x=\sqrt{9}=3 \\ \mbox{ou, } x=-\dfrac{7}{3}\enar\right.
  \enar$
  \hfill
  $\ul{\mathcal{S}_3=\la -\dfrac{7}{3}\,;\,-3\,;\,3\ra}$

\medskip
$\bgar{ll}(E_4):\ &(2x-3)(x+6)-(x+6)=0
  \iff 
  (x+6)\Big[(2x-3)-1\Big]=0\\
  &\iff 
  (x+6)\lb 2x-4\rb=0
  \iff
  \la\bgar{lll} &x+6=0 \\ \mbox{ou, } &2x-4=0\enar\right.
  \iff
  \la\bgar{lll} &x=-6 \\ \mbox{ou, } &x=2\enar\right.
  \enar$
  \hfill
  $\ul{\mathcal{S}_4=\la -6\,;\,2\ra}$

\medskip
$\bgar{ll}(E_5):\ &\dfrac{2}{2x+5}-\dfrac{1}{4x-3}=0
  \iff
  \dfrac{6x-11}{(2x+5)(4x-3)}=0
  \iff
  \la\bgar{ll} &6x-11=0 \\ \mbox{et,}&(2x+5)(4x-3)\not=0\enar\right.\\
  &\iff
  \la\bgar{ll} &x=\dfrac{11}{6} \\ 
  \mbox{et,}&x\not=-\dfrac{5}{2}\ \mbox{et, } x\not=\dfrac{3}{4}\enar\right.
  \hspace*{8.8cm}\ul{\mathcal{S}_5=\la \dfrac{11}{6} \ra}\enar$

\medskip
$\bgar{l}(E_6):\ (2x+3)^2=49
  \iff
  \la\bgar{lll} &2x+3=-7 \\ \mbox{ou, } &2x+3=7\enar\right.
  \iff
  \la\bgar{lll} &x=-5 \\ \mbox{ou, } &x=2\enar\right.
  \enar$
  \hfill
  $\ul{\mathcal{S}_6=\la -5\,;\,2 \ra}$


\medskip
$\bgar{ll}(E_7): &\dfrac{x}{2x+1}=1
\iff
\dfrac{x}{2x+1}-1=0
\iff
\dfrac{x}{2x+1}-\dfrac{2x+1}{2x+1}=0\\
&\iff
\dfrac{-x-1}{2x+1}=0
\iff\la\bgar{ll}
&-x-1=0 \vspd\\
\mbox{et,}\ &2x+1\not=0
\enar\right.
\iff
\la\bgar{ll}
&x=-1 \vspd\\
\mbox{et,}\ &x\not=-\frac{1}{2}
\enar\right.
\enar$, 
\hfill
\ul{$\mathcal{S}_7=\la -1\ra$}. 

\medskip
$\bgar{ll}(E_8): 
&\dfrac{6x(x+1)}{x-4}=30+\dfrac{120}{x-4}
\iff\dfrac{6x(x+1)}{x-4}-\dfrac{30(x-4)}{x-4}-\dfrac{120}{x-4}=0\\
&\iff\dfrac{6x^2+6x-30x+120-120}{x-4}=0
\iff\dfrac{6x^2-24x}{x-4}=0\enar$

On peut, et doit, factoriser le num\'erateur:
$(E_8) \iff \dfrac{6x(x-4)}{x-4}=0$

C'est une \'equation quotient, et donc, 
$\la\bgar{ll}6x(x-4)=0 \\\text{et, }x-4\not=0\enar\right.
\iff \la\bgar{ll}6x=0 \text{ ou, } x-4=0\\\text{et,}x-4\not=0\enar\right.$
\hfill
$\ul{\mathcal{S}_8=\la0\ra}$. 

\enex



\label{LastPage}
\end{document}

Télécharger le fichier source Latex