Exercice 1 On considère les nombres complexes $z_A = 1 + i\sqrt{3}$ et $z_B = [4; -\frac{\pi}{6}]$. On note A et B les points d'affixe respective z_A et z_B .

- a) Ecrire z_A sous forme trigonométique et z_B sous forme algébrique .
- b) Placer dans un repère orthonormal $(O; \vec{u}, \vec{v})$ les points A et B.
- c) En déduire une mesure de l'angle $(\overrightarrow{OB}, \overrightarrow{OA})$.
- d) Donner les coordonnées des vecteurs \overrightarrow{OA} et \overrightarrow{OB} . En déduire alors la valeur du produit scalaire $\overrightarrow{OA} \cdot \overrightarrow{OB}$.

Exercice 2 Le plan est rapporté à un repère $(O; \vec{u}, \vec{v})$ (unité graphique 1cm).

On considère dans $\mathbb C$ la transformation f qui, à tout nombre complexe z, fait correspondre le nombre :

$$f(z) = iz + 2 + i.$$

- a) Calculer f(i), f(1) et f(2+3i).
- b) On pose z = x + iy. Ecrire sous forme algébrique f(x + iy). Quelle est la partie réelle de f(x + iy)? Quelle est la partie imaginaire de f(x + iy)?
- c) Déterminer x et y pour que f(z) = 0. On appelle A le point dont l'affixe est le nombre complexe ainsi déterminé. Placer A dans le repère orthonormal $(O; \vec{u}, \vec{v})$.
- d) Quelle condition doit-on avoir sur x pour que f(z) soit un nombre réel? Représenter l'ensemble de tous les points M du plan dont l'affixe z vérifie cette condition.

Exercice 3 Soit \vec{u} , \vec{v} et \vec{w} les vecteurs dont les coordonnées dans la repère orthonormal $(O; \vec{i}, \vec{j}, \vec{k})$ sont :

$$\vec{u}(2;1)$$
 , $\vec{v}(\frac{2-\sqrt{3}}{4};\frac{1+2\sqrt{3}}{4})$, $\vec{w}(-\frac{6+\sqrt{3}}{4};\frac{-3+2\sqrt{3}}{4})$,

Calculer $||\vec{u}||$, $||\vec{v}||$, $||\vec{w}||$, $|\vec{u} \cdot \vec{v}|$ et $|\vec{v} \cdot \vec{w}|$.

En déduire une mesure de l'angle (\vec{u}, \vec{v}) .

Exercice 4 On cherche à déterminer la masse d'une plaque d'aluminium de forme triangulaire et de 5 mm d'épaisseur.

On note A, B et C les sommets du triangle, et \widehat{A} , \widehat{B} et \widehat{C} les angles associés.

On connaît : AB=35 cm, AC=15 cm, $\widehat{A}=52^{\circ}$, aisni que la masse volumique de l'aluminium : $\rho=2,7\,q.cm^{-3}$.

- a) Déterminer la longueur BC.
- b) On appelle H le sommet de la hauteur issue de C. Exprimer $\sin \widehat{A}$ et en déduire la longueur HC.
- c) Cacluler alors l'aire du triangle ABC, et en déduire le volume puis la masse de la plaque d'aluminium.