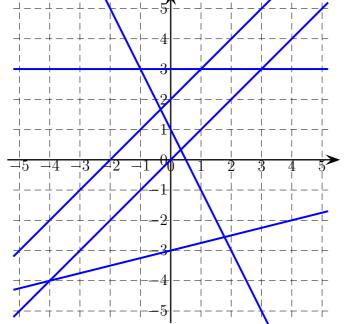
Exercice 1 Soit la fonction f définie par l'expression $f(x) = 2x^2 - 3x + 2$. Indiquer les points qui appartiennent à C_f :

 $A(0;2) \; ; \; B(1;1) \; ; \; C(-2;4) \; ; \; D(-3;29) \; ; \; E(10;172) \; ; \; F(125;30\,877) \; .$

Placer ces points dans un repère et tracer l'allure de \mathcal{C}_f .

Exercice 2 Tracer les droites $D_1: y = 2x + 1$, $D_2: y = -x + 1$ et $D_3: y = 2x + 3$. Tracer la courbe représentative des fonctions définies par les expressions $f(x) = x^2$, $g(x) = -2x^2 + 4x + 1$, h(x) = 2x - 1.

Exercice 3 Déterminer l'équation de la droite D passant par A(1;2) et B(5;10).



Exercice 4

Déterminer l'équation des droites.

Exercice 5 Soit $f(x) = x^2 - 2x$. Soit A le point de C_f d'abscisse 1, et B le point de C_f d'abscisse 3. Déterminer l'équation de la droite D passant par A et B. Tracer C_f et D.

Exercice 6 Soit f la fonction carré et C_f sa courbe représentative.

On note A, M_1 , M_2 et M_3 les points de C_f d'abscisses respectives 1, 2, 3 et 4.

- 1. Tracer sur une figure C_f et placer les points A, M_1, M_2, M_3 .
- 2. Calculer les coefficients directeurs des droites (AM_3) , (AM_2) et (AM_1) .
- 3. Soit un nombre réel h > 0, et M le point de \mathcal{C}_f d'abscisse 1 + h.

Donner une expression du coefficient directeur m_h de la droite (AM).

4. Compléter le tableau :

h	1	0, 5	0, 1	0,01	0,001	0,0001
m_h						

5. Que se passe-t-il lorsque h se rapproche de 0?

18 - 16 - 14 - 12 - 10 - 8 - 4 - 4				
2 +	A_{\times}			
-2	1	2	3	4

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{1}{2}x^2 - 3$. Exercice 7

- 1. Tracer dans un repère orthogonal C_f et sa tangente au point d'abscisse a=1. Déterminer alors graphiquement f'(1).
- 2. a) Pour h > 0, on pose $m_h = \frac{f(a+h) f(a)}{h}$.

Compléter le tableau :

	10					
h	1	0, 5	0, 1	0,01	0,001	0,0001
m_h						

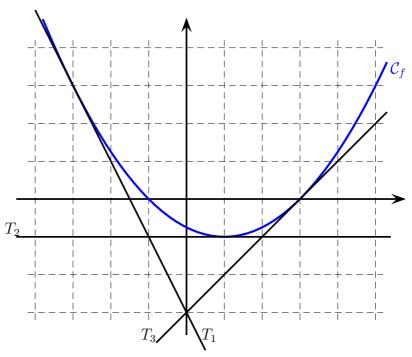
Vers quelle valeur tend le nombre a_h lorsque le nombre h tend vers 0?

b) Démontrer ce résultat algébriquement à partir de l'expression de m_h et de celle de f.

 C_f est la courbe Exercice 8 représentative d'une fonction f.

 T_1 , T_2 et T_3 sont les tangentes à \mathcal{C}_f aux points d'abscisses respectives -3, 1 et 3.

Déterminer f'(-3), f'(1) et f'(3).



Exercice 9 Déterminer la fonction dérivée f' de la fonction f dans chacun des cas :

a)
$$f(x) = 3$$

b)
$$f(x) = 3x$$

c)
$$f(x) = \frac{5}{2}x$$

$$d) f(x) = x^2$$

e)
$$f(x) = x^7$$

$$f) f(x) = 2x^3$$

g)
$$f(x) = 3x + 2$$

f)
$$f(x) = 2x^3$$
 g) $f(x) = 3x + 2$ h) $f(x) = x + \frac{1}{x}$

i)
$$f(x) = -x^2 + x - \frac{7}{2}$$
 j) $f(x) = \frac{2x}{x+1}$ k) $f(x) = \frac{-x^2 - x + 1}{x+1}$ l) $f(x) = \frac{4}{x}$

$$j) f(x) = \frac{2x}{x+1}$$

k)
$$f(x) = \frac{-x^2 - x + 1}{x + 1}$$

$$f(x) = \frac{4}{x}$$

m)
$$f(x) = 2x^5 - \frac{x^3}{3}$$

n)
$$f(x) = (3x+2)x^2$$

m)
$$f(x) = 2x^5 - \frac{x^3}{3}$$
 n) $f(x) = (3x+2)x^2$ o) $f(x) = (-2x+1)(x+1)$ p) $f(x) = \frac{-2x+1}{(x+1)^2}$

p)
$$f(x) = \frac{-2x+1}{(x+1)^2}$$

$$p) f(x) = 3\cos(x)$$

$$f(x) = \cos^2(x)$$

$$o) f(x) = \sin(2x+1)$$

n)
$$f(x) = \cos^2(x)$$
 o) $f(x) = \sin(2x+1)$ p) $f(x) = x\sin(2^2+1)$

Soit la fonction f définie par $f(x) = x^2 - 2x$. Exercice 10

- 1. Donner le tableau de variation de f
- 2. Donner l'équation de la tangente à C_f en $x_0 = 2$.
- 3. Donner de même les équations des tangentes en $x_0 = -2$, $x_0 = 0$ et $x_0 = 1$.
- 4. Tracer dans un repère ces quatre droites et \mathcal{C}_f .

Exercice 11 Donner dans chacun des cas l'équation de la tangente à C_f au point d'absisse a: 1) $f(x)=x^3+8x-32$ en a=2 2) $f(x)=\frac{1}{3x^2-x+2}$ en a=1 3) $f(x)=\cos\left(2x+\frac{\pi}{4}\right)$

1)
$$f(x) = x^3 + 8x - 32$$
 en $a = 2$

2)
$$f(x) = \frac{1}{3x^2 - x + 2}$$
 en $a = 1$

3)
$$f(x) = \cos\left(2x + \frac{\pi}{4}\right)$$

Exercice 12 Dresser le tableau de variation des fonctions de l'exercice précédent de a) à l) et des fonctions suivantes :

q)
$$f(x) = 2x^2 + 4x - 3$$
 r) $f(x) = 2x^3 + 3x^2 - 36x + 4$ s) $f(x) = \frac{-2x + 1}{x + 1}$ t) $f(x) = \frac{-2x + 1}{(x + 1)^2}$

t) $f(x) = -x^3 + 6x^2 - 1$

Exercice 13 Soit f la fonction définie sur [-10; 10] par $f(x) = -x^3 + 6x^2 - 10$.

Rechercher les éventuels extrema locaux et globaux de f.

Exercice 14 Soit la fonction f définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$, $a \neq 0$.

Déterminer les coordonnés de l'extremum de f. Est-ce un minimum ou un maximum?

Exercice 15 Soit f une fonction définie et dérivable sur l'intervalle [-6;4].

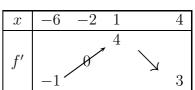
On donne le tableau de variation de la fonction f':

Préciser les éventuels extrema locaux de f.

Exercice 16 Soit f une fonction définie et dérivable sur l'intervalle [-6; 4].

On donne le tableau de variation de la fonction f':

Préciser les éventuels extrema locaux de f.



x	-4	-1	1	2	4
f'	-7		-1	8	, 3

Exercice 17 La consommation C d'un véhicule peut s'exprimer en fonction de la vitesse v, pour une vitesse comprise entre 10 km/h et 130 km/h, par l'expression

$$C(v) = 0,06v + \frac{150}{v} .$$

A quelle vitesse faut-il rouler pour que la consommation soit minimale?

Exercice 18 Soit f une fonction définie et dérivable sur [-2; 5] et dont le tableau de variation est le suivant :

\boldsymbol{x}	-2		1		4		5
f	1	7	4	\searrow	-3	7	10

Déterminer le nombre de solutions, et l'intervalle elles se situent, de l'équation

a)
$$f(x) = 0$$

b)
$$f(x) = 2$$

c)
$$f(x) = -5$$

Exercice 19 On considère la fonction définie sur \mathbb{R} par $f(x) = x^3 + x + 1$.

Montrer que l'équation f(x) = 0 admet une unique solution sur [-3; 2].

Déterminer un encadrement plus précis de cette solution.

Exercice 20 On considère la fonction définie sur IR par $f(x) = x^3 - 3x - 1$.

Montrer que l'équation f(x) = 0 admet exactement trois solutions, respectivement dans les intervalles]-2;-1[,]-1;1[et]1;2[.

Donner un encadrement d'amplitude 10^{-2} de la plus grande de ces solutions.