Devoir à la maison

Exercice 1 Le but de cet exercice est d'effectuer le tracer de la courbe C_f représentative de la fonction f, où la fonction est définie par l'expression :

$$f(x) = \frac{x^3 + 20x}{x^2 + 2}$$

- 1) Montrer que la fonction f est impaire. Sur quel ensemble suffit-il de l'étudier? (justifier)
- 2) Etude des variations de f.
 - a) Montrer que $f'(x) = \frac{x^4 14x^2 + 40}{(x^2 + 2)^2}$.
 - b) Etudier le signe de f' et dresser le tableau de variations de f.
- 3) Déterminer les équations des tangentes en 0, 1, 2, $\sqrt{6}$ et $\sqrt{10}$.
- 4) Position relative de la courbe par rapport à la tangente en $\sqrt{6}$.
 - a) Soit $P(x) = 8(x^2 + 2) \left[f(x) \left(-\frac{1}{8}x + \frac{27}{8}\sqrt{6} \right) \right]$. Montrer que $P(x) = 9x^3 - 27\sqrt{6}x^2 + 162x - 54\sqrt{6}$.
 - b) Calculer $P(\sqrt{6})$.
 - c) Factoriser P.
 - d) En déduire le signe de $f(x) \left(-\frac{1}{8}x + \frac{27}{8}\sqrt{6}\right)$, puis la positon relative de C_f par rapport à sa tangente en $\sqrt{6}$.
- 5) Tracer dans un repère orthonormal, avec 2 cm pour unité, les tangentes à C_f en 0, 1, 2, $\sqrt{6}$ et $\sqrt{10}$.

Tracer ensuite la courbe C_f en utilisant tous les éléments de l'étude précédente (on pourra éventuellement ajouter quelques points).

Exercice 2 (Distance d'un point à une parabole).

Dans un repère orthonormal $(O; \vec{i}, \vec{j})$, \mathcal{P} est la parabole d'équation $y = x^2$ et A le point de coordonnées (2; 0).

Le but de l'exercice est de trouver M sur \mathcal{P} tel que la distance AM soit minimale.

- 1. On note x l'abscisse d'un point M de $\mathcal{P}.$ Vérifier que $AM^2=x^4+x^2-4x+4.$
- 2. Soit f la fonction définie sur \mathbb{R} par : $f(x) = x^4 + x^2 4x + 4$. Justifier que f'(x) est du signe de $2x^3 + x 2$.
- 3. On note g la fonction définie sur IR par : $g(x) = 2x^3 + x 2$.
 - a) Etudier les variations de g et dresser son tableau de variations.
 - b) Démontrer que l'équation g(x) = 0 admet une unique solution α et que $0 < \alpha < 1$.
- 4. a) Déduire de ce qui précède les variations de f et dresser son tableau de variations.
 - b) Démontrer alors qu'il existe un seul point M_0 de \mathcal{P} d'abscisse α pour lequel la distance AM_0 est minimale.
 - c) Démontrer que la tangente à \mathcal{P} en M_0 est perpendiculaire à la droite (AM_0) .