Interpolation & extrapolation de données IUT SGM

Y. Morel

2020/2021

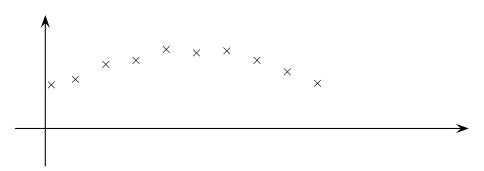
https://xymaths.fr/

- Position du problème
- 2 Interpolation
- Optimisation Moindres carrés
 - Droite des moindres carrés
 - Modélisation, corrélation, causalité
 - Corrélation entre phénomènes Quelques exemples!

Objectif:

Modéliser un ensemble de données, par exemples des résultat expérimentaux, c'est-à-dire formuler une loi permettant de rendre compte de ces résultats.

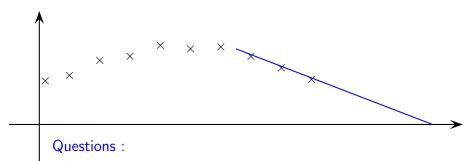
Exemple : Trajectoire d'un objet, positions mesurées :



Objectif:

Modéliser un ensemble de données, par exemples des résultat expérimentaux, c'est-à-dire formuler une loi permettant de rendre compte de ces résultats.

Exemple : Trajectoire d'un objet, positions mesurées :

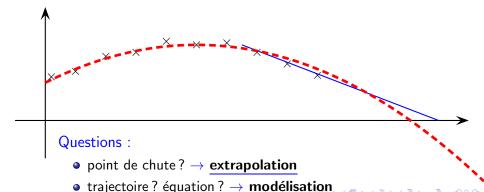


● point de chute? → extrapolation

Objectif:

Modéliser un ensemble de données, par exemples des résultat expérimentaux, c'est-à-dire formuler une loi permettant de rendre compte de ces résultats.

Exemple : Trajectoire d'un objet, positions mesurées :



Deux principales méthodes :

<u>Interpolation</u>: on impose à la fonction recherchée de passer "exactement" par tous les points.

Autant de paramètres que de points, par exemple fonction polynomiale de degré n pour n+1 points.

- Optimisation : on cherche une fonction qui passe "au mieux" par les points :
 - → méthode des moindres carrés

- Position du problème
- 2 Interpolation
- Optimisation Moindres carrés
 - Droite des moindres carrés
 - Modélisation, corrélation, causalité
 - Corrélation entre phénomènes Quelques exemples!

Interpolation polynomiale

On a N+1 données $A_i\left(x_i;y_i\right)$ par lesquelles on cherche à "faire passer" un polynôme :

$$P(x) = a_N x^N + a_{N-1} x^{N-1} + \dots + a_1 x + a_0$$

Les coefficients a_i vérifient le système :

$$\begin{cases} P(x_0) = a_N x_0^N + a_{N-1} x_0^{N-1} + \dots + a_1 x_0 + a_0 = y_0 \\ P(x_1) = a_N x_1^N + a_{N-1} x_1^{N-1} + \dots + a_1 x_1 + a_1 = y_1 \\ \dots \\ P(x_N) = a_N x_N^N + a_{N-1} x_N^{N-1} + \dots + a_N x_N + a_1 = y_N \end{cases}$$

C'est un système linéaire qui s'écrit sous la forme matricielle MU=B

Exercice: On considère les trois points $A_0(0;2)$, $A_1(1;4)$ et $A_2(2,2)$.

On note $P(x) = ax^2 + bx + c$ le polynôme d'interpolation de degré 2.

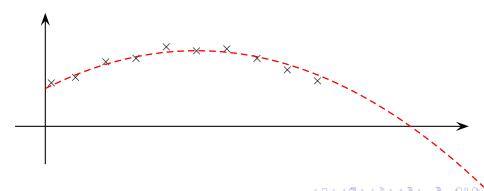
Écrire sous forme matricielle AX = B le système vérifié par les coefficients a_0 , a_1 et a_2 , en précisant les matrices A, X et B.

- En présence d'un grand nombre de points, la méthode d'interpolation par un polynôme de degré élevé peut être instable.
- Les données sont parfois (souvent?) imprécises, et les contraintes $P\left(x_i\right)=y_i$ sont inutilement trop fortes.
- La méthode n'est pas robuste : si un point est "erroné", il influe de manière significative sur tous les coefficients et le polynôme peut être grandement différent.

- Position du problème
- 2 Interpolation
- Optimisation Moindres carrés
 - Droite des moindres carrés
 - Modélisation, corrélation, causalité
 - Corrélation entre phénomènes Quelques exemples!

On souhaite modéliser le nuage de points $A_i\left(x_i;y_i\right)$ par une fonction qui passe "au mieux" par ces points.

Dans l'exemple du début, d'après la physique sous-jacente : la chute d'un corps, on sait que la trajectoire est parabolique, donc suit la courbe d'un polynôme de degré 2 (et pas plus!)



On cherche donc le polynôme $P(x) = ax^2 + bx + c$.

- En écrivant le système d'équations : $P\left(x_i\right)=y_i$, on obtient un système surdéterminé de N+1 équations à 3 inconnues, qui n'admet en général pas de solution.
- On cherche alors plutôt que la distance entre les points $A_i\left(x_i;y_i\right)$ donnés

et
$$A_{i}'\left(x_{i};P\left(x_{i}\right)\right)$$
 modélisés

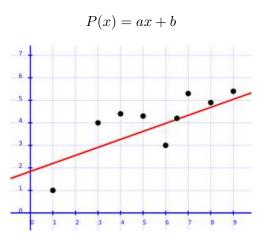
soit minimale : on cherche a, b et c tels que

$$d(a;b;c) = (P(x_0) - y_0)^2 + (P(x_1) - y_1)^2 + \dots + (P(x_N) - y_N)^2$$
$$= \sum_{i=1}^{N} (P(x_i) - y_i)^2$$

soit minimal.

- Position du problème
- 2 Interpolation
- Optimisation Moindres carrés
 - Droite des moindres carrés
 - Modélisation, corrélation, causalité
 - Corrélation entre phénomènes Quelques exemples!

Une utilisation courante est l'approximation, ou modélisation, par une fonction affine (polynôme de degré 1) :



Voir Tracer et calcul de la droite des moindres carrés

Les données $(x_i;y_i)$ sont approchées par le modèle affine : $(x_i;\widetilde{y_i})$ avec $\widetilde{y_i}=P\left(x_i\right)=ax_i+b$ tel que l'erreur quadratique :

$$d(a,b) = \sum_{i=1}^{N} \left[\widetilde{y}_i - y_i \right]^2$$
$$= \sum_{i=1}^{N} \left[(ax_i + b) - y_i \right]^2$$

soit minimale.

La droite d'équation alors trouvée est la droite dite des moindres carrés, ou de régression linéaire, ou encore d'ajustement affine.

Plusieurs approches, ou point de vu :

ullet Optimisation : d(a,b) est minimal lorsque

$$\overrightarrow{\nabla}d = \overrightarrow{0} \iff \frac{\partial d(a,b)}{\partial a} = \frac{\partial d(a,b)}{\partial b} = 0$$

• Équations normales : si le sytème (surdéterminé) est MU=B, avec $U=\left(\begin{array}{c} a \\ b \end{array} \right)$, alors d(a,b) est minimal pour U solution de

$$M^T M U = M^T B$$

• Statistique :
$$a = \frac{\mathsf{Cov}\,(X,Y)}{\mathsf{Var}(X)} = \frac{\overline{xy} - \overline{x} \times \overline{y}}{\overline{x^2} - \overline{x}^2}$$

et
$$b = \overline{y} - a\overline{x}$$

Gauss, au tout début du 19ème siècle, a développé cette méthode pour répondre à la question :

le modèle (ici affine) est-il adapté aux données

En effet, on peut toujours calculé la droite des moindres carrés, mais est-elle pertinente?

Le coefficient de corrélation (ou de détermination dans certain logiciels) est l'indicateur qui permet de quantifier cette pertinence :

$$r = \frac{\text{cov}(\mathbf{X}, \mathbf{Y})}{\sigma(X)\sigma(Y)}$$

- Si $|R| \simeq 1$, (|R| > 0,9) le modèle affine est pertinent,
- sinon, |R| < 0, 9, il vaut mieux essayer de trouver un autre modèle.

Exercice : Durée de vie et maintenance d'équipements.

Les pourcentages $R(t_i)$ des appareils mécaniques encore en service après un nombre t_i d'heures de fonctionnement ont été relevés et notés dans le tableau suivant :

t_i	100	300	500	1000	1500
$R(t_i)$	0,80	0,52	0,32	0,12	0,04

- Placer les points sur un graphique. Un ajustement affine est-il pertinent?
- ② On pose $y_i = \ln R(t_i)$. Peut-on envisager un ajustement affine du nuage de points $B_i(t_i;y_i)$? Donner l'équation de la droite de régression et en déduire une expression de la forme $R(t) = ke^{-\lambda t}$, avec k et λ des constantes.
- 3 Déterminer à l'aide du modèle précédent, le nombre d'équipements encore en service au bout de 900 heures de fonctionnement.

- Position du problème
- 2 Interpolation
- Optimisation Moindres carrés
 - Droite des moindres carrés
 - Modélisation, corrélation, causalité
 - Corrélation entre phénomènes Quelques exemples!

Attention : corréler n'est pas expliquer.

De nombreux phénomènes peuvent être mis en corrélation, c'est-à-dire, en termes maintenant plus précis, le modèle (affine par exemple) reliant les grandeurs observées pour ces deux phénomènes a un bon coefficient de corrélation, ce n'est pas une explication pour autant.

- Position du problème
- 2 Interpolation
- Optimisation Moindres carrés
 - Droite des moindres carrés
 - Modélisation, corrélation, causalité
 - Corrélation entre phénomènes Quelques exemples!

- Une étude a montré que la fréquence des maladies des personnes habitant à proximité de lignes à haute tension est plus élevée que pour le reste de la population.
 - Plus précisément, il y a une corrélation siginificative entre la distance du logement à la ligne haute tension et la fréquence des maladies.

 Une étude a montré que la fréquence des maladies des personnes habitant à proximité de lignes à haute tension est plus élevée que pour le reste de la population.

Plus précisément, il y a une corrélation siginificative entre la distance du logement à la ligne haute tension et la fréquence des maladies.

Donc : l'influence de la haute tension est néfaste!

 Une étude a montré que la fréquence des maladies des personnes habitant à proximité de lignes à haute tension est plus élevée que pour le reste de la population.

Plus précisément, il y a une corrélation siginificative entre la distance du logement à la ligne haute tension et la fréquence des maladies.

Donc : l'influence de la haute tension est néfaste!

• Il y a une corrélation significative entre la probabilité de mourir et le nombre de jours passés à l'hopital :

- Une étude a montré que la fréquence des maladies des personnes habitant à proximité de lignes à haute tension est plus élevée que pour le reste de la population.
 - Plus précisément, il y a une corrélation siginificative entre la distance du logement à la ligne haute tension et la fréquence des maladies.
 - Donc : l'influence de la haute tension est néfaste!
- Il y a une corrélation significative entre la probabilité de mourir et le nombre de jours passés à l'hopital :
 - **Donc :** dès entré à l'hôpital, partez en le plus vite possible si vous voulez augmenter vos chances de survie!

- Une étude a montré que la fréquence des maladies des personnes habitant à proximité de lignes à haute tension est plus élevée que pour le reste de la population.
 - Plus précisément, il y a une corrélation siginificative entre la distance du logement à la ligne haute tension et la fréquence des maladies.
 - Donc : l'influence de la haute tension est néfaste!
- Il y a une corrélation significative entre la probabilité de mourir et le nombre de jours passés à l'hopital :
 - **<u>Donc</u>**: dès entré à l'hôpital, partez en le plus vite possible si vous voulez augmenter vos chances de survie!

"Quand on est malade, il ne faut surtout pas aller à l'hôpital : la probabilité de mourir dans un lit d'hôpital est 10 fois plus grande que dans son lit à la maison" Coluche Une étude a montré que la fréquence des maladies des personnes habitant à proximité de lignes à haute tension est plus élevée que pour le reste de la population.

Plus précisément, il y a une corrélation siginificative entre la distance du logement à la ligne haute tension et la fréquence des maladies.

Donc : l'influence de la haute tension est néfaste!

• Il y a une corrélation significative entre la probabilité de mourir et le nombre de jours passés à l'hopital :

<u>Donc</u>: dès entré à l'hôpital, partez en le plus vite possible si vous voulez augmenter vos chances de survie!

"Quand on est malade, il ne faut surtout pas aller à l'hôpital : la probabilité de mourir dans un lit d'hôpital est 10 fois plus grande que dans son lit à la maison" Coluche

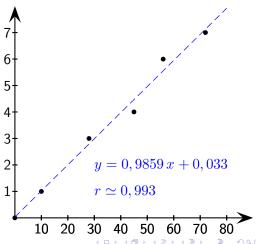
• La majorité des accidents arrivent pour des trajets de moins de 30 km

Donc : habitez plus loin, ou faites des détours pour aller travailler!

Un exemple détaillé

Nombre de morts par noyade dans une ville de la méditerranée en fonction du nombre de climatiseurs vendus dans la zone commerciale de la ville :

Nombre	Nombre			
de clims	de			
vendues	noyades			
0	0			
10	1			
28	3			
45	4			
56	6			
72	7			



Autre exemple ...

Divorce rate in Maine

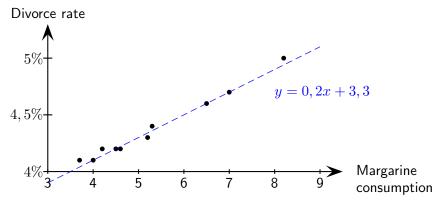
correlates with

Per capita consumption of margarine

tylervigen.com

Source: http://tylervigen.com/spurious-correlations

Divorce vs. margarine



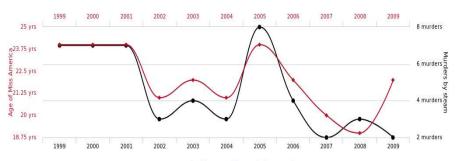
Corrélation : $r \simeq 0,993 \ldots$

Autre exemple, bis, ...

Age of Miss America

correlates with

Murders by steam, hot vapours and hot objects



◆ Murders by steam ◆ Age of Miss America

tidaninan com

Source: http://tylervigen.com/spurious-correlations