Equations différentielles - Exercices

Ι -Nombres complexes

Exercice 1 Résoudre l'équation $x^2 + 2x + 2 = 0$.

Vérifier que les deux nombres complexes trouvés sont bien solutions de l'équation.

Exercice 2 Résoudre les équations :

a)
$$x^2 + 2x + 65 = 0$$

b)
$$r^2 + 4r + 4 = 0$$

c)
$$z^2 - 3z - 4 = 0$$

d)
$$z^2 = -4$$
 e) $z^2 = 7$

f)
$$z^2 - 4z + 8 = 0$$

a)
$$z^2 + 2z + 65 = 0$$
 b) $r^2 + 4r + 4 = 0$ c) $z^2 - 3z - 4 = 0$ d) $z^2 = -4$ e) $z^2 = 7$ f) $z^2 - 4z + 8 = 0$ g) $r^2 - \frac{1}{2}r + \frac{1}{8} = 0$ h) $r^2 - 3r + 3 = 0$ i) $r^2 + 8r - 20 = 0$

h)
$$r^2 - 3r + 3 = 0$$

i)
$$r^2 + 8r - 20 = 0$$

Equations différentielles Π

1) Equations différentielles linéraires du premier ordre

Résoudre l'équation 2y' + 4y = 3, en recherchant une fonction constante solution Exercice 3 particulière.

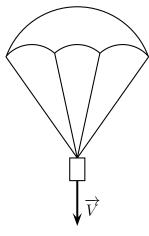
Exercice 4 Résoudre l'équation différentielle $y' + 3y = e^{-t}$, en recherchant une solution particulière sous la forme $y_p(t) = Ae^{-t}$.

Exercice 5 Résoudre l'équation différentielle (E): y' + 3y = 12.

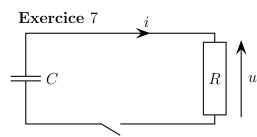
Déterminer alors la solution de (E) vérifiant y(0) = 1.

Exercice 6 Vitesse d'un parachute La vitesse d'un objet suspendu à un parachute est solution de l'équation (E): mv'(t) + kv(t) = mg.

On prendra : m = 10kg, $g = 10 \, m.s^{-2}$ et k = 25 u.S.I.



- 1. Déterminer la fonction constante v_p solution de (E). Donner alors l'ensemble des solutions de (E).
- 2. a) Donner la solution v_1 de l'équation (E) dont la vitesse initiale est $v_1(0) = 5 \, m.s^{-1}$.
 - b) Donner la solution v_2 de l'équation (E) dont la vitesse initiale est $v_2(0) = 10 \, m.s^{-1}$
 - c) Donner la solution v_3 de l'équation (E) dont la vitesse initiale est
 - d) Déterminer les limites lorsque $t \to +\infty$ des fonctions v_1, v_2 et v_3 .



Dans un circuit RC, on a les relation u(t) = Ri(t)

et $i(t) = -\frac{dq}{dt} = -q'(t)$ avec la charge q(t) = Cu(t). Ainsi, $u(t) = Ri(t) = R\left(Cu(t)\right)'$,

soit encore l'équation différentielle (E): RCu'(t) + u(t) = 0.

On prend $C = 15.10^{-5}$ farads et $R = 2.10^4$ ohms.

- 1. Résoudre l'équation différentielle (E), puis déterminer la fonction u solution telle que $u(0) = u_0 = 10$ volts.
- 2. Déterminer la limite $\lim_{t\to +\infty} u(t)$.
- 3. A partir de quel instant t_1 la tension u(t) vérifie $u(t) \leqslant \frac{1}{10}u_0$.
- 4. Tracer la courbe représentative de la fonction u.

Exercice 8 Incident à l'eau de mer

Un réservoir contient 1000 litres d'eau douce dont la salinité est de $0, 12 \ g.L^{-1}$.

A la suite d'un incident, de l'eau de mer pénètre dans le réservoir à raison de 10 litres par minute. On s'intéresse à l'évolution au cours du temps de la salinité dans le réservoir. On note s cette salinité, s étant donc une fonction du temps t.

On admet que s est solution de l'équation différentielle

$$(E): s' + 0.01s = 0.39$$

- 1. a) Résoudre l'équation (E_1) : s' + 0,01s = 0.
 - b) Déterminer une fonction constante q solution de l'équation (E).
 - c) Résoudre l'équation (E).
- 2. A l'instant t=0 où débute l'incident, la salinité de l'eau dans le réservoir était de $0, 12 \ g.L^{-1}$. Montrer que l'on alors $s(t)=39-38, 88 \ e^{-0.01t}$.
- 3. Déduire du résultatprécédent la salinité de l'eau dans le réservoir au bout de 60 minutes.
- 4. De combien de temps le service d'intervention dispose-t'il pour colmater l'infiltration si la salinité doit rester inférieure à $3,9 g.L^{-1}$?

2) Equations différentielles linéaires du second ordre

Exercice 9 Soit l'équation différentielle (E): y'' - y' - 6y = 6t.

- 1. Vérifier que les fonctions $y_1(t) = Ae^{3t}$ et $y_2(t) = Be^{-2t}$ sont des solutions de l'équation sans second membre (E_0) : y'' y' 6y = 0.
- 2. Déterminer les nombres réels a et b tels que $y_p(t) = at + b$ soit une solution de (E).
- 3. En déduire que $y = y_1 + y_2 + y_p$ est une solution générale de (E).

Exercice 10 Vérifier que la fonction définie par $y(t) = e^{2t} \cos(3t)$ est une solution de l'équation (E_0) : y'' - 4y' + 13y = 0.

Exercice 11 Déterminer les fonctions solutions de l'équation différentielle (E): y'' - 4y' + 3y = 0.

Exercice 12 Déterminer les fonctions solutions de l'équation différentielle (E): y'' + 2y' + 2y = 0.

Exercice 13 Déterminer les fonctions solutions de l'équation différentielle (E): y'' + 4y = 0.

Exercice 14 Soit l'équation différentielle (E): $y'' - 4y' + 3y = -3t^2 + 2t$.

Chercher une solution particulière de (E) sous la forme d'un polynôme du second degré. Déterminer alors l'ensemble des solutions de l'équation (E).

Exercice 15 Soit l'équation (E): $y'' - 4y' + 4y = 3e^{-t}$.

Chercher une solution particulière de (E) sous la forme $y_p(t) = Ae^{-t}$.

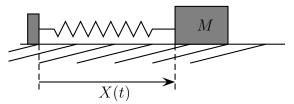
Déterminer alors l'ensemble des solutions de (E).

Exercice 16 On considère l'équation différentielle : (E) : y'' - 3y' + 2y = 4, dans laquelle y est une fonction de la variable x.

- 1. Résoudre l'équation différentielle (E_0) sans second membre associée à (E).
- 2. Déterminer une fonction constante g solution de (E).
- 3. En déduire l'ensemble des solutions de (E).
- 4. Déterminer la solution particulière de (E) vérifiant de plus les conditions initiales f(0) = 1 et f'(0) = 2.

Exercice 17 Objet retenu par un ressort.

On fixe à l'extrémité d'un ressort horizontal un objet qui peut coulisser sans frottement sur un plan.



On repère l'objet par sa position X qui varie en fonction du temps t.

On admet que la fonction X est solution de l'équation

$$(E): X'' + 100X = 0$$

- 1. Résoudre l'équation différentielle (E).
- 2. Déterminer la solution de l'équation (E) telle que $X(0) = 10^{-1}$ et X'(0) = 0.
- 3. On admet que si l'objet M frotte sur le plan, l'équation différentielle devient (E'): X'' + X' + 100 = 0.

Résoudre de même (E'), avec les mêmes conditions initiales.

4. Représenter graphiquement les solutions de (E) et (E').

Exercice 18 Oscillations libres et amorties dans un fluide visqueux.

L'écart à sa position initiale d'un objet dans un fluide visqueux est une fonction du temps solution de l'équation différentielle

$$(E): \frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 2y = 0$$

- 1. Résoudre l'équation différentielle (E).
- 2. Déterminer la solution particulière de (E) qui s'annule pour t=0 et dont la dérivée vaut 4 pour t=0.

Exercice 19 Oscillations forcées et amorties dans un fluide visqueux.

L'objet de l'exercice précédent, toujours dans le même fluide visqueux, est maintenant soumis à une excitation entretenue.

L'écart de l'objet à sa position initiale est alors solution de l'équation différentielle

$$(E): \frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 2y = 10\cos(2t)$$

- 1. Montrer que la solution g définie par $g(t) = 2\sin(2t) \cos(2t)$ est une solution particulière de (E).
- 2. Déterminer alors l'ensemble des solutions de (E).
- 3. Déterminer la solution f de (E) vérifiant les conditions initiales f(0) = 0 et f'(0) = 2.

III - Problèmes complets

Exercice 20 Partie A. Résolution d'une équation différentielle

On considère l'équation différentielle (E): y'+y=x où y est une fonction de la variable x définie et dérivable sur \mathbb{R} , et y' la fonction dérivée de y.

- 1. Résoudre dans IR l'équation différentielle $(E_0): y' + y = 0$.
- 2. Rechercher une fonction affine solution particulière de (E).
- 3. En déduire l'ensemble des solutions de l'équation (E).
- 4. Déterminer la fonction f solution de (E) telle que f(0) = 1.

Partie B. Etude de la solution.

On étudie la fonction f trouvée ci-dessus, définie sur l'intervalle $[-1; +\infty[$ par $f(x) = 2e^{-x} + x - 1.$

- 1. Calculer la dérivée f' de f.
 - Etudier son signe et dresser le tableau de variation de f.
- 2. Déterminer la limite $\lim_{x \to +\infty} f(x) (x-1)$.

On note Δ la droite d'équation y = x - 1. Interpréter graphiquement le résultat précédent, puis tracer Δ et l'allure de la courbe représentative de f.

Exercice 21 Problème d'isolation.

Pour tester la résistance d'une plaque d'isolation phonique à la chaleur, on porte sa température à 100°C et on étudie l'évolution de sa température en fonction du temps.

On note $\theta(t)$ la température de la plaque, en degré Celsius, à l'instant t, en minutes.

La température ambiante est de 19°C et après 6 minutes la température est redescendue à 82°C.

On admet que la fonction θ est solution de l'équation différentielle (E): y' + 0,042y = 0,798.

Partie A.

- 1. Rechercher une fonction constnate solution particulière de (E). Donner alors l'ensemble des solutions de l'équation (E).
- 2. D'après l'énoncé, que vaut $\theta(0)$, la température initiale de la plaque. En déduire la solution particulière de (E) donnant la température de la plque en fonction du temps.

Partie B.

- 1. Calculer la température de la plaque après 35 minutes.
- 2. Calculer la dérivée θ' de θ . En déduire le sens de variation de theta sur $[0; +\infty[$.
- 3. Calculer la limite de $\theta(t)$ lorsque t tend vers $+\infty$.
- 4. Représenter graphiquement la fonction θ .
- 5. Calculer le temps à partir duquel la température de la plaque est inférieure à 30°C. Vérifier graphiquement ce résultat.